Inelvis Castro Cabrera, Karel Vives Hernández, Mariela Anahí Bruno, Walter David Obregón, Martha Hernández de la Torre
{"title":"In vitro propagation strategies of Puya chilensis as an alternative for obtaining new cysteine proteases","authors":"Inelvis Castro Cabrera, Karel Vives Hernández, Mariela Anahí Bruno, Walter David Obregón, Martha Hernández de la Torre","doi":"10.1007/s11240-024-02811-8","DOIUrl":null,"url":null,"abstract":"<p><i>Puya chilensis</i> is an endemic species of Chile belonging to the Bromeliaceae family, known for its morphological plasticity and ecological importance. In recent years, greater attention has been given to its conservation due to the indiscriminate use of its populations for food and medicinal purposes. <i>In vitro</i> culture is a tool for the propagation of plants species, as well as for obtaining bioactive compounds. In Chile, <i>P. chilensis</i> is the most representative within the <i>Puya</i> genus. This study focused on establishing an <i>in vitro</i> propagation protocol for <i>P. chilensis</i> that allows massive propagation and obtaining proteolytic enzymes. The combined effect of plants cuts and the application of 0.5 µmol L<sup>−1</sup> of BAP and GA<sub>3</sub> favored the <i>in vitro</i> multiplication of <i>P. chilensis</i>. Culture in liquid medium induced greater morphological development and early differentiation of anatomical structures in the leaves of <i>P. chilensis in vitro</i>. The use of TIS creates ideal conditions during the last stage of <i>in vitro</i> culture and ensures 100% survival during acclimatization phase. The management of cultivation conditions and the efficient use of TIS allowed the generation of <i>P. chilensis</i> plants with an optimal degree of development for obtaining proteolytic extracts. The main enzymes present in the extracts of <i>P. chilensis</i> plants grown <i>in vitro</i> belong to the cysteine type. This study proposes for the first time an optimized protocol for the propagation and conservation of <i>P. chilensis,</i> enhancing its uses as a source of biologically active molecules for the biotechnology and pharmaceutical industries.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"20 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell, Tissue and Organ Culture","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02811-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Puya chilensis is an endemic species of Chile belonging to the Bromeliaceae family, known for its morphological plasticity and ecological importance. In recent years, greater attention has been given to its conservation due to the indiscriminate use of its populations for food and medicinal purposes. In vitro culture is a tool for the propagation of plants species, as well as for obtaining bioactive compounds. In Chile, P. chilensis is the most representative within the Puya genus. This study focused on establishing an in vitro propagation protocol for P. chilensis that allows massive propagation and obtaining proteolytic enzymes. The combined effect of plants cuts and the application of 0.5 µmol L−1 of BAP and GA3 favored the in vitro multiplication of P. chilensis. Culture in liquid medium induced greater morphological development and early differentiation of anatomical structures in the leaves of P. chilensis in vitro. The use of TIS creates ideal conditions during the last stage of in vitro culture and ensures 100% survival during acclimatization phase. The management of cultivation conditions and the efficient use of TIS allowed the generation of P. chilensis plants with an optimal degree of development for obtaining proteolytic extracts. The main enzymes present in the extracts of P. chilensis plants grown in vitro belong to the cysteine type. This study proposes for the first time an optimized protocol for the propagation and conservation of P. chilensis, enhancing its uses as a source of biologically active molecules for the biotechnology and pharmaceutical industries.
期刊介绍:
This journal highlights the myriad breakthrough technologies and discoveries in plant biology and biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC: Journal of Plant Biotechnology) details high-throughput analysis of gene function and expression, gene silencing and overexpression analyses, RNAi, siRNA, and miRNA studies, and much more. It examines the transcriptional and/or translational events involved in gene regulation as well as those molecular controls involved in morphogenesis of plant cells and tissues.
The journal also covers practical and applied plant biotechnology, including regeneration, organogenesis and somatic embryogenesis, gene transfer, gene flow, secondary metabolites, metabolic engineering, and impact of transgene(s) dissemination into managed and unmanaged plant systems.