{"title":"Optimization of acquisition patterns for establishing inter CubeSat optical communications","authors":"Rene Ruddenklau;Georg Schitter","doi":"10.1364/JOCN.518004","DOIUrl":null,"url":null,"abstract":"As commercially available CubeSats with up to six standardized units cannot achieve the precision required for an instantaneous establishment of a low-divergence optical inter-satellite link, search patterns are used to scan the remaining field of uncertainty. This analysis optimizes the simultaneously executed search pattern combinations of the two laser communication terminals involved. Based on a Monte Carlo simulation, the perturbations on these links are investigated, and the corresponding key performance parameters such as mean acquisition time and success rate are calculated. The results are penalized by the hardware specifications, including actuator and sensor bandwidths, given by their design. Residual attitude error components imply a significant influence on the acquisition process and are therefore presented within this work. The pattern pairs are fed through an automated optimization algorithm to tune and analyze them. In this particular scenario of two CubeISL models, the mean duration for a first detected acquisition hit is within a pattern period of 3.2 s for the best performing pairs spiral-rose and lissajous-rose. Assuming an uncertainty field of \n<tex>${\\pm}0.2\\;{\\rm deg}$</tex>\n due to limited attitude knowledge, success rates between 82.3% and 99.9% are achieved.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"814-821"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620312","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10620312/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
As commercially available CubeSats with up to six standardized units cannot achieve the precision required for an instantaneous establishment of a low-divergence optical inter-satellite link, search patterns are used to scan the remaining field of uncertainty. This analysis optimizes the simultaneously executed search pattern combinations of the two laser communication terminals involved. Based on a Monte Carlo simulation, the perturbations on these links are investigated, and the corresponding key performance parameters such as mean acquisition time and success rate are calculated. The results are penalized by the hardware specifications, including actuator and sensor bandwidths, given by their design. Residual attitude error components imply a significant influence on the acquisition process and are therefore presented within this work. The pattern pairs are fed through an automated optimization algorithm to tune and analyze them. In this particular scenario of two CubeISL models, the mean duration for a first detected acquisition hit is within a pattern period of 3.2 s for the best performing pairs spiral-rose and lissajous-rose. Assuming an uncertainty field of
${\pm}0.2\;{\rm deg}$
due to limited attitude knowledge, success rates between 82.3% and 99.9% are achieved.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.