DMFTNet: dense multimodal fusion transfer network for free-space detection

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-29 DOI:10.1007/s00530-024-01417-6
Jiabao Ma, Wujie Zhou, Meixin Fang, Ting Luo
{"title":"DMFTNet: dense multimodal fusion transfer network for free-space detection","authors":"Jiabao Ma, Wujie Zhou, Meixin Fang, Ting Luo","doi":"10.1007/s00530-024-01417-6","DOIUrl":null,"url":null,"abstract":"<p>Free-space detection is an essential task in autonomous driving; it can be formulated as the semantic segmentation of driving scenes. An important line of research in free-space detection is the use of convolutional neural networks to achieve high-accuracy semantic segmentation. In this study, we introduce two fusion modules: the dense exploration module (DEM) and the dual-attention exploration module (DAEM). They efficiently capture diverse fusion information by fully exploring deep and representative information at each network stage. Furthermore, we propose a dense multimodal fusion transfer network (DMFTNet). This architecture uses elaborate multimodal deep fusion exploration modules to extract fused features from red–green–blue and depth features at every stage with the help of DEM and DAEM and then densely transfer them to predict the free space. Extensive experiments were conducted comparing DMFTNet and 11 state-of-the-art approaches on two datasets. The proposed fusion module ensured that DMFTNet’s free-space-detection performance was superior.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01417-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Free-space detection is an essential task in autonomous driving; it can be formulated as the semantic segmentation of driving scenes. An important line of research in free-space detection is the use of convolutional neural networks to achieve high-accuracy semantic segmentation. In this study, we introduce two fusion modules: the dense exploration module (DEM) and the dual-attention exploration module (DAEM). They efficiently capture diverse fusion information by fully exploring deep and representative information at each network stage. Furthermore, we propose a dense multimodal fusion transfer network (DMFTNet). This architecture uses elaborate multimodal deep fusion exploration modules to extract fused features from red–green–blue and depth features at every stage with the help of DEM and DAEM and then densely transfer them to predict the free space. Extensive experiments were conducted comparing DMFTNet and 11 state-of-the-art approaches on two datasets. The proposed fusion module ensured that DMFTNet’s free-space-detection performance was superior.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DMFTNet:用于自由空间探测的密集多模态融合传输网络
自由空间检测是自动驾驶中的一项重要任务,可表述为驾驶场景的语义分割。自由空间检测的一个重要研究方向是利用卷积神经网络实现高精度的语义分割。在本研究中,我们引入了两个融合模块:密集探索模块(DEM)和双注意探索模块(DAEM)。它们通过在每个网络阶段充分探索深层次的代表性信息,有效地捕捉到了多样化的融合信息。此外,我们还提出了密集多模态融合传输网络(DMFTNet)。该架构使用精心设计的多模态深度融合探索模块,在 DEM 和 DAEM 的帮助下,在每个阶段从红绿蓝和深度特征中提取融合特征,然后将其密集传输以预测自由空间。在两个数据集上进行了广泛的实验,比较了 DMFTNet 和 11 种最先进的方法。所提出的融合模块确保了 DMFTNet 的自由空间探测性能更优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1