{"title":"DMFTNet: dense multimodal fusion transfer network for free-space detection","authors":"Jiabao Ma, Wujie Zhou, Meixin Fang, Ting Luo","doi":"10.1007/s00530-024-01417-6","DOIUrl":null,"url":null,"abstract":"<p>Free-space detection is an essential task in autonomous driving; it can be formulated as the semantic segmentation of driving scenes. An important line of research in free-space detection is the use of convolutional neural networks to achieve high-accuracy semantic segmentation. In this study, we introduce two fusion modules: the dense exploration module (DEM) and the dual-attention exploration module (DAEM). They efficiently capture diverse fusion information by fully exploring deep and representative information at each network stage. Furthermore, we propose a dense multimodal fusion transfer network (DMFTNet). This architecture uses elaborate multimodal deep fusion exploration modules to extract fused features from red–green–blue and depth features at every stage with the help of DEM and DAEM and then densely transfer them to predict the free space. Extensive experiments were conducted comparing DMFTNet and 11 state-of-the-art approaches on two datasets. The proposed fusion module ensured that DMFTNet’s free-space-detection performance was superior.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01417-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Free-space detection is an essential task in autonomous driving; it can be formulated as the semantic segmentation of driving scenes. An important line of research in free-space detection is the use of convolutional neural networks to achieve high-accuracy semantic segmentation. In this study, we introduce two fusion modules: the dense exploration module (DEM) and the dual-attention exploration module (DAEM). They efficiently capture diverse fusion information by fully exploring deep and representative information at each network stage. Furthermore, we propose a dense multimodal fusion transfer network (DMFTNet). This architecture uses elaborate multimodal deep fusion exploration modules to extract fused features from red–green–blue and depth features at every stage with the help of DEM and DAEM and then densely transfer them to predict the free space. Extensive experiments were conducted comparing DMFTNet and 11 state-of-the-art approaches on two datasets. The proposed fusion module ensured that DMFTNet’s free-space-detection performance was superior.