Large-scale Epidemiological modeling: Scanning for Mosquito-Borne Diseases Spatio-temporal Patterns in Brazil

Eduardo C. Araujo, Claudia T. Codeço, Sandro Loch, Luã B. Vacaro, Laís P. Freitas, Raquel M. Lana, Leonardo S. Bastos, Iasmim F. de Almeida, Fernanda Valente, Luiz M. Carvalho, Flávio C. Coelho
{"title":"Large-scale Epidemiological modeling: Scanning for Mosquito-Borne Diseases Spatio-temporal Patterns in Brazil","authors":"Eduardo C. Araujo, Claudia T. Codeço, Sandro Loch, Luã B. Vacaro, Laís P. Freitas, Raquel M. Lana, Leonardo S. Bastos, Iasmim F. de Almeida, Fernanda Valente, Luiz M. Carvalho, Flávio C. Coelho","doi":"arxiv-2407.21286","DOIUrl":null,"url":null,"abstract":"The influence of climate on mosquito-borne diseases like dengue and\nchikungunya is well-established, but comprehensively tracking long-term spatial\nand temporal trends across large areas has been hindered by fragmented data and\nlimited analysis tools. This study presents an unprecedented analysis, in terms\nof breadth, estimating the SIR transmission parameters from incidence data in\nall 5,570 municipalities in Brazil over 14 years (2010-2023) for both dengue\nand chikungunya. We describe the Episcanner computational pipeline, developed\nto estimate these parameters, producing a reusable dataset describing all\ndengue and chikungunya epidemics that have taken place in this period, in\nBrazil. The analysis reveals new insights into the climate-epidemic nexus: We\nidentify distinct geographical and temporal patterns of arbovirus disease\nincidence across Brazil, highlighting how climatic factors like temperature and\nprecipitation influence the timing and intensity of dengue and chikungunya\nepidemics. The innovative Episcanner tool empowers researchers and public\nhealth officials to explore these patterns in detail, facilitating targeted\ninterventions and risk assessments. This research offers a new perspective on\nthe long-term dynamics of climate-driven mosquito-borne diseases and their\ngeographical specificities linked to the effects of global temperature\nfluctuations such as those captured by the ENSO index.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of climate on mosquito-borne diseases like dengue and chikungunya is well-established, but comprehensively tracking long-term spatial and temporal trends across large areas has been hindered by fragmented data and limited analysis tools. This study presents an unprecedented analysis, in terms of breadth, estimating the SIR transmission parameters from incidence data in all 5,570 municipalities in Brazil over 14 years (2010-2023) for both dengue and chikungunya. We describe the Episcanner computational pipeline, developed to estimate these parameters, producing a reusable dataset describing all dengue and chikungunya epidemics that have taken place in this period, in Brazil. The analysis reveals new insights into the climate-epidemic nexus: We identify distinct geographical and temporal patterns of arbovirus disease incidence across Brazil, highlighting how climatic factors like temperature and precipitation influence the timing and intensity of dengue and chikungunya epidemics. The innovative Episcanner tool empowers researchers and public health officials to explore these patterns in detail, facilitating targeted interventions and risk assessments. This research offers a new perspective on the long-term dynamics of climate-driven mosquito-borne diseases and their geographical specificities linked to the effects of global temperature fluctuations such as those captured by the ENSO index.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模流行病学建模:巴西蚊媒疾病时空模式扫描
气候对登革热和基孔肯雅病等蚊媒疾病的影响已得到公认,但由于数据零散、分析工具有限,一直无法全面跟踪大面积地区的长期时空趋势。本研究从广度上介绍了一种前所未有的分析方法,即从巴西所有 5570 个城市 14 年(2010-2023 年)的登革热和基孔肯雅发病数据中估算出 SIR 传播参数。我们介绍了为估算这些参数而开发的 Episcanner 计算管道,该管道产生了一个可重复使用的数据集,描述了这一时期在巴西发生的所有登革热和基孔肯雅病流行情况。分析揭示了气候与流行病关系的新见解:我们确定了巴西各地虫媒病毒疾病发生的独特地理和时间模式,突出了气温和降水等气候因素如何影响登革热和基孔肯雅病流行的时间和强度。创新的 Episcanner 工具使研究人员和公共卫生官员能够详细探索这些模式,从而促进有针对性的干预和风险评估。这项研究提供了一个新的视角,让人们了解气候驱动的蚊媒疾病的长期动态及其与全球温度波动(如厄尔尼诺/南方涛动指数所反映的温度波动)的影响有关的地理特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1