Molecular characteristics and phylogenetic definition on the complete chloroplast genome of Petrocodon longitubus

IF 1.7 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Reports Pub Date : 2024-07-31 DOI:10.1007/s11816-024-00919-z
Zaiqi Luo, FengXia Yan, Ronghui Jiang, Yanjun Chen, Changsha Luo, CongRui Li
{"title":"Molecular characteristics and phylogenetic definition on the complete chloroplast genome of Petrocodon longitubus","authors":"Zaiqi Luo, FengXia Yan, Ronghui Jiang, Yanjun Chen, Changsha Luo, CongRui Li","doi":"10.1007/s11816-024-00919-z","DOIUrl":null,"url":null,"abstract":"<p><i>Petrocodon</i> is a small genus in the family Gesneriaceae, which is special for its remarkable floral diversity, and has high ornamental value. In this study, the complete chloroplast genome sequence and genome characteristics of <i>Petrocodon longitubus</i> are first reported. The genome size is 152,958 bp, including a large single-copy region (LSC, 83,901 bp), a small single-copy region (SSC, 18,255 bp), and two inverted repeat sequences (IRs, 25,401 bp, each). The chloroplast genome of P. longitubus was analyzed, revealing a total GC content of 37.47%. A total of 131 genes were de novo assembled, consisting of 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. A comparative analysis was conducted between the chloroplast genome of <i>P. longitubus</i> and three other published species of <i>Petrocodon</i>. The chloroplast genome of four <i>Petrocodon</i> species was found to have a double-chain ring structure, with a size ranging from 152,958 to 153,292 bp. Chloroplast genome size had indistinguishable. Four <i>Petrocodon</i> species was ra elatively conserved sequence, with 87 or 88 protein-coding genes, and 8 rRNA were the most conserved, which contains 42 ~ 50 SSR sites, which are mainly mononucleotides and dinucleotides, 4 boundary transition regions, then trinucleotides, pentanucleotides and hexanucleotides have been not detected. The non-preferred codons of the chloroplast genome in the four Petrocodo<i>n</i> species are those ending in A, C, G, or T. The chloroplast genomes of these four Petrocodon species are highly similar to each other and to several <i>Primulina</i> species. Phylogenetic trees indicate that <i>P. longitubus</i> and other <i>Petrocodon</i> species were grouped together in a clade, with <i>P. longitubus</i> form a single clade. The results support the scientific naming of <i>P. Longitubusr</i> based on horticultural traits and further clarify the systematic status using molecular information.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":"35 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-024-00919-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Petrocodon is a small genus in the family Gesneriaceae, which is special for its remarkable floral diversity, and has high ornamental value. In this study, the complete chloroplast genome sequence and genome characteristics of Petrocodon longitubus are first reported. The genome size is 152,958 bp, including a large single-copy region (LSC, 83,901 bp), a small single-copy region (SSC, 18,255 bp), and two inverted repeat sequences (IRs, 25,401 bp, each). The chloroplast genome of P. longitubus was analyzed, revealing a total GC content of 37.47%. A total of 131 genes were de novo assembled, consisting of 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. A comparative analysis was conducted between the chloroplast genome of P. longitubus and three other published species of Petrocodon. The chloroplast genome of four Petrocodon species was found to have a double-chain ring structure, with a size ranging from 152,958 to 153,292 bp. Chloroplast genome size had indistinguishable. Four Petrocodon species was ra elatively conserved sequence, with 87 or 88 protein-coding genes, and 8 rRNA were the most conserved, which contains 42 ~ 50 SSR sites, which are mainly mononucleotides and dinucleotides, 4 boundary transition regions, then trinucleotides, pentanucleotides and hexanucleotides have been not detected. The non-preferred codons of the chloroplast genome in the four Petrocodon species are those ending in A, C, G, or T. The chloroplast genomes of these four Petrocodon species are highly similar to each other and to several Primulina species. Phylogenetic trees indicate that P. longitubus and other Petrocodon species were grouped together in a clade, with P. longitubus form a single clade. The results support the scientific naming of P. Longitubusr based on horticultural traits and further clarify the systematic status using molecular information.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长舌石龙子完整叶绿体基因组的分子特征和系统发育定义
Petrocodon 是 Gesneriaceae 科的一个小属,以其显著的花卉多样性而特别,具有很高的观赏价值。本研究首次报道了 Petrocodon longitubus 的完整叶绿体基因组序列和基因组特征。其基因组大小为 152 958 bp,包括一个大的单拷贝区(LSC,83 901 bp)、一个小的单拷贝区(SSC,18 255 bp)和两个反向重复序列(IRs,各 25 401 bp)。对 P. longitubus 的叶绿体基因组进行了分析,发现其总 GC 含量为 37.47%。共从头组装了 131 个基因,包括 87 个蛋白质编码基因、36 个 tRNA 基因和 8 个 rRNA 基因。研究人员对 P. longitubus 的叶绿体基因组与其他三个已发表的 Petrocodon 物种进行了比较分析。研究发现,4 个石龙子物种的叶绿体基因组具有双链环状结构,大小从 152 958 到 153 292 bp 不等。叶绿体基因组大小无差异。4个Petrocodon物种的序列相对保守,有87或88个蛋白质编码基因,其中8个rRNA最为保守,包含42~50个SSR位点,主要是单核苷酸和二核苷酸,4个边界过渡区,然后是三核苷酸,五核苷酸和六核苷酸均未检出。这四个石龙子物种叶绿体基因组的非首选密码子是以 A、C、G 或 T 结尾的密码子。系统发生树表明,P. longitubus 和其他 Petrocodon 种类被归为一个支系,而 P. longitubus 则形成一个支系。结果支持根据园艺特征对 P. Longitubusr 进行科学命名,并利用分子信息进一步明确了其系统地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Reports
Plant Biotechnology Reports 生物-生物工程与应用微生物
CiteScore
4.10
自引率
4.20%
发文量
72
审稿时长
>12 weeks
期刊介绍: Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.
期刊最新文献
Overexpression of CRK4, the cysteine-rich receptor-like protein kinase of Arabidopsis, regulates the resistance to abiotic stress and abscisic acid responses Identification and characterization of a novel Wx-B1 allele in a waxy wheat (Triticum aestivum L.) Molecular characterization of a sweetpotato stress tolerance-associated GDP-L-galactose phosphorylase gene (IbGGP1) in response to abiotic stress Differential expression of sweetpotato nodulin 26-like intrinsic protein (NIP) genes in response to infection with the root knot nematode Identification of key genes regulating macronutrient accumulation and final yield in wheat under potassium deficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1