Refinement of Analytical Current Waveform for Acoustic Noise Reduction in Switched Reluctance Motor

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Industry Applications Pub Date : 2024-07-29 DOI:10.1109/OJIA.2024.3434668
Fares S. El-Faouri;Yifei Cai;Akira Chiba
{"title":"Refinement of Analytical Current Waveform for Acoustic Noise Reduction in Switched Reluctance Motor","authors":"Fares S. El-Faouri;Yifei Cai;Akira Chiba","doi":"10.1109/OJIA.2024.3434668","DOIUrl":null,"url":null,"abstract":"In this article, a refinement algorithm of the current waveform that flattens the radial-force sum in switched reluctance motors is proposed. Flattening the radial-force sum eliminates the multiples of the third radial-force component. These components excite the breathing mode vibration, which is typically the dominant vibration in switched reluctance motors with a high number of poles. The previously proposed analytical current derivation for flattening the radial-force sum neglects magnetic saturation, limiting its applicability to low-torque region. Consequently, for high-torque saturation conditions, the previous waveform shaping degrades in flattening the radial-force sum. The proposed refinement of the analytical current waveform addresses this limitation, enabling effective radial-force sum flattening even under high-torque conditions. Additionally, the proposed current exhibits significantly lower peaks than those of the flattening methods at high-torque region in the literature, mitigating the need for higher-rated inverters. Finite element analysis and experimental validation verify the effectiveness of the proposed method.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"325-337"},"PeriodicalIF":7.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10613515","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10613515/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a refinement algorithm of the current waveform that flattens the radial-force sum in switched reluctance motors is proposed. Flattening the radial-force sum eliminates the multiples of the third radial-force component. These components excite the breathing mode vibration, which is typically the dominant vibration in switched reluctance motors with a high number of poles. The previously proposed analytical current derivation for flattening the radial-force sum neglects magnetic saturation, limiting its applicability to low-torque region. Consequently, for high-torque saturation conditions, the previous waveform shaping degrades in flattening the radial-force sum. The proposed refinement of the analytical current waveform addresses this limitation, enabling effective radial-force sum flattening even under high-torque conditions. Additionally, the proposed current exhibits significantly lower peaks than those of the flattening methods at high-torque region in the literature, mitigating the need for higher-rated inverters. Finite element analysis and experimental validation verify the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进用于降低开关磁阻电机声学噪声的分析电流波形
本文提出了一种能使开关磁阻电机径向力总和变平的电流波形细化算法。扁平化径向力总和消除了第三个径向力分量的倍数。这些分量会激发呼吸模式振动,而呼吸模式振动通常是极数较多的开关磁阻电机的主要振动。之前提出的用于平整径向力总和的电流分析推导忽略了磁饱和,从而限制了其在低转矩区域的适用性。因此,在高转矩饱和条件下,先前的波形整形会降低径向力和的平坦化效果。对分析电流波形的改进解决了这一局限性,即使在高扭矩条件下也能有效地平整径向力总和。此外,所提出的电流波形在高扭矩区域的峰值明显低于文献中的扁平化方法,从而减少了对更高等级逆变器的需求。有限元分析和实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
期刊最新文献
IEEE Industry Applications Society Information Cooperative UAV Scheduling for Power Grid Deicing Using Fuzzy Learning and Evolutionary Optimization State-of-the-Art of CSR Design for Novel Applications Trend Front Cover IEEE Open Journal of Industry Applications Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1