Electrochemical Kinetic Behaviors and Sensing Performance of Au@ZIF-8 and Ag@ZIF-8 Nanocomposites-Based Platforms Towards Ultrasensitive Detection of Chloramphenicol
Tuyet Nhung Pham, Van Manh Tien, Van Hoang Ong, Nhat Trang Nguyen Le, Thuy Nguyen Linh Ho, Hoang Doan Tan Le, Nguyen Quang Hoa, Hoang Vinh Tran, Dinh Ngo Xuan, Huy Tran Quang, Lam Dinh Vu, Anh-Tuan Le
{"title":"Electrochemical Kinetic Behaviors and Sensing Performance of Au@ZIF-8 and Ag@ZIF-8 Nanocomposites-Based Platforms Towards Ultrasensitive Detection of Chloramphenicol","authors":"Tuyet Nhung Pham, Van Manh Tien, Van Hoang Ong, Nhat Trang Nguyen Le, Thuy Nguyen Linh Ho, Hoang Doan Tan Le, Nguyen Quang Hoa, Hoang Vinh Tran, Dinh Ngo Xuan, Huy Tran Quang, Lam Dinh Vu, Anh-Tuan Le","doi":"10.1149/1945-7111/ad650b","DOIUrl":null,"url":null,"abstract":"Silver (Ag) and gold (Au) nanoparticles (NPs) are incorporated into the zeolitic imidazolate framework-8 (ZIF-8) host matrix, which is successfully coated the screen-printed electrodes (SPEs) for the effective detection of chloramphenicol (CAP). The morphological and structural characteristics are examined using scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis. Additionally, the electrochemical characteristics and sensing performance of CAP on the proposed electrodes are investigated in detail using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and differential pulse voltammetry (DPV) measurements, respectively. The results suggest the SPEs modified with Ag@ZIF-8 and Au@ZIF-8 exhibit impressive enhancements in sensitivity, linear concentration range, limits of detection (LODs), and repeatability. Under the optimum conditions, the proposed electrochemical sensors had a linear range of 0.25–50 <italic toggle=\"yes\">μ</italic>M for Ag@ZIF-8/SPE and 5–50 <italic toggle=\"yes\">μ</italic>M for Au@ZIF-8/SPE, corresponding to LODs of 0.16 and 0.404 <italic toggle=\"yes\">μ</italic>M, respectively. Notably, a series of kinetic parameters related to the redox reactions of both standard Fe(CN)<sub>6</sub>\n<sup>3−/4−</sup> probe and CAP molecules in phosphate-buffered saline (PBS) buffer are determined. Furthermore, valuable insights into the influence mechanism nature of Ag@ZIF-8 and Au@ZIF-8 nanocomposites on the electrochemical behaviors are proposed, demonstrating the great potential of the developed sensors for CAP detection.<inline-formula>\n<inline-graphic xlink:href=\"jesad650b-ga.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"25 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad650b","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Silver (Ag) and gold (Au) nanoparticles (NPs) are incorporated into the zeolitic imidazolate framework-8 (ZIF-8) host matrix, which is successfully coated the screen-printed electrodes (SPEs) for the effective detection of chloramphenicol (CAP). The morphological and structural characteristics are examined using scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis. Additionally, the electrochemical characteristics and sensing performance of CAP on the proposed electrodes are investigated in detail using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and differential pulse voltammetry (DPV) measurements, respectively. The results suggest the SPEs modified with Ag@ZIF-8 and Au@ZIF-8 exhibit impressive enhancements in sensitivity, linear concentration range, limits of detection (LODs), and repeatability. Under the optimum conditions, the proposed electrochemical sensors had a linear range of 0.25–50 μM for Ag@ZIF-8/SPE and 5–50 μM for Au@ZIF-8/SPE, corresponding to LODs of 0.16 and 0.404 μM, respectively. Notably, a series of kinetic parameters related to the redox reactions of both standard Fe(CN)63−/4− probe and CAP molecules in phosphate-buffered saline (PBS) buffer are determined. Furthermore, valuable insights into the influence mechanism nature of Ag@ZIF-8 and Au@ZIF-8 nanocomposites on the electrochemical behaviors are proposed, demonstrating the great potential of the developed sensors for CAP detection.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.