Dong Hyun Choi;Yoon Ha Joo;Ki Hong Kim;Jeong Ho Park;Hyunjin Joo;Hyoun-Joong Kong;Hyunju Lee;Kyoung Jun Song;Sungwan Kim
{"title":"A Development of a Sound Recognition-Based Cardiopulmonary Resuscitation Training System","authors":"Dong Hyun Choi;Yoon Ha Joo;Ki Hong Kim;Jeong Ho Park;Hyunjin Joo;Hyoun-Joong Kong;Hyunju Lee;Kyoung Jun Song;Sungwan Kim","doi":"10.1109/JTEHM.2024.3433448","DOIUrl":null,"url":null,"abstract":"The objective of this study was to develop a sound recognition-based cardiopulmonary resuscitation (CPR) training system that is accessible, cost-effective, easy-to-maintain and provides accurate CPR feedback. Beep-CPR, a novel device with accordion squeakers that emit high-pitched sounds during compression, was developed. The sounds emitted by Beep-CPR were recorded using a smartphone, segmented into 2-second audio fragments, and then transformed into spectrograms. A total of 6,065 spectrograms were generated from approximately 40 minutes of audio data, which were then randomly split into training, validation, and test datasets. Each spectrogram was matched with the depth, rate, and release velocity of the compression measured at the same time interval by the ZOLL X Series monitor/defibrillator. Deep learning models utilizing spectrograms as input were trained using transfer learning based on EfficientNet to predict the depth (Depth model), rate (Rate model), and release velocity (Recoil model) of compressions. Results: The mean absolute error (MAE) for the Depth model was 0.30 cm (95% confidence interval [CI]: 0.27–0.33). The MAE of the Rate model was 3.6/min (95% CI: 3.2–3.9). For the Recoil model, the MAE was 2.3 cm/s (95% CI: 2.1–2.5). External validation of the models demonstrated acceptable performance across multiple conditions, including the utilization of a newly-manufactured device, a fatigued device, and evaluation in an environment with altered spatial dimensions. We have developed a novel sound recognition-based CPR training system, that accurately measures compression quality during training. Significance: Beep-CPR is a cost-effective and easy-to-maintain solution that can improve the efficacy of CPR training by facilitating decentralized at-home training with performance feedback.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"550-557"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10613881","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10613881/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to develop a sound recognition-based cardiopulmonary resuscitation (CPR) training system that is accessible, cost-effective, easy-to-maintain and provides accurate CPR feedback. Beep-CPR, a novel device with accordion squeakers that emit high-pitched sounds during compression, was developed. The sounds emitted by Beep-CPR were recorded using a smartphone, segmented into 2-second audio fragments, and then transformed into spectrograms. A total of 6,065 spectrograms were generated from approximately 40 minutes of audio data, which were then randomly split into training, validation, and test datasets. Each spectrogram was matched with the depth, rate, and release velocity of the compression measured at the same time interval by the ZOLL X Series monitor/defibrillator. Deep learning models utilizing spectrograms as input were trained using transfer learning based on EfficientNet to predict the depth (Depth model), rate (Rate model), and release velocity (Recoil model) of compressions. Results: The mean absolute error (MAE) for the Depth model was 0.30 cm (95% confidence interval [CI]: 0.27–0.33). The MAE of the Rate model was 3.6/min (95% CI: 3.2–3.9). For the Recoil model, the MAE was 2.3 cm/s (95% CI: 2.1–2.5). External validation of the models demonstrated acceptable performance across multiple conditions, including the utilization of a newly-manufactured device, a fatigued device, and evaluation in an environment with altered spatial dimensions. We have developed a novel sound recognition-based CPR training system, that accurately measures compression quality during training. Significance: Beep-CPR is a cost-effective and easy-to-maintain solution that can improve the efficacy of CPR training by facilitating decentralized at-home training with performance feedback.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.