From Fault Likelihood to Fault Networks: Stochastic Seismic Interpretation Through a Marked Point Process with Interactions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-30 DOI:10.1007/s11004-024-10150-9
Fabrice Taty Moukati, Radu Stefan Stoica, François Bonneau, Xinming Wu, Guillaume Caumon
{"title":"From Fault Likelihood to Fault Networks: Stochastic Seismic Interpretation Through a Marked Point Process with Interactions","authors":"Fabrice Taty Moukati, Radu Stefan Stoica, François Bonneau, Xinming Wu, Guillaume Caumon","doi":"10.1007/s11004-024-10150-9","DOIUrl":null,"url":null,"abstract":"<p>Faults are crucial subsurface features that significantly influence the mechanical behavior and hydraulic properties of rock masses. Interpreting them from seismic data may lead to various scenarios due to uncertainties arising from limited seismic bandwidth, possible imaging errors, and human interpretation noise. Although methods addressing fault uncertainty exist, only a few of them can produce curved and sub-seismic faults simultaneously while quantitatively honoring seismic images and avoiding anchoring to a reference interpretation. This work uses a mathematical framework of marked point processes to approximate fault networks in two dimensions with a set of line segments. The proposed stochastic model, namely the Candy model, incorporates simple pairwise and nearby connections to capture the interactions between fault segments. The novelty of this approach lies in conditioning the stochastic model using input images of fault probabilities generated by a convolutional neural network. The Metropolis–Hastings algorithm is used to generate various scenarios of fault network configurations, thereby exploring the model space associated with the Candy model and reflecting the uncertainty. Probability level sets constructed from these fault segment configurations provide insights on the obtained realizations and on the model parameters. The empty space function produces a ranking of the generated fault networks against an existing interpretation by testing and quantifying their spatial variability. The approach is applied to two-dimensional sections of seismic data, in the Central North Sea.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-024-10150-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Faults are crucial subsurface features that significantly influence the mechanical behavior and hydraulic properties of rock masses. Interpreting them from seismic data may lead to various scenarios due to uncertainties arising from limited seismic bandwidth, possible imaging errors, and human interpretation noise. Although methods addressing fault uncertainty exist, only a few of them can produce curved and sub-seismic faults simultaneously while quantitatively honoring seismic images and avoiding anchoring to a reference interpretation. This work uses a mathematical framework of marked point processes to approximate fault networks in two dimensions with a set of line segments. The proposed stochastic model, namely the Candy model, incorporates simple pairwise and nearby connections to capture the interactions between fault segments. The novelty of this approach lies in conditioning the stochastic model using input images of fault probabilities generated by a convolutional neural network. The Metropolis–Hastings algorithm is used to generate various scenarios of fault network configurations, thereby exploring the model space associated with the Candy model and reflecting the uncertainty. Probability level sets constructed from these fault segment configurations provide insights on the obtained realizations and on the model parameters. The empty space function produces a ranking of the generated fault networks against an existing interpretation by testing and quantifying their spatial variability. The approach is applied to two-dimensional sections of seismic data, in the Central North Sea.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从断层可能性到断层网络:通过带有相互作用的标记点过程进行随机地震解释
断层是重要的地下特征,对岩体的机械行为和水力特性有重大影响。由于有限的地震带宽、可能的成像误差和人为解释噪音等不确定性因素,从地震数据中解释断层可能会导致各种情况。虽然存在解决断层不确定性的方法,但只有少数几种方法能在定量尊重地震图像和避免锚定参考解释的同时,生成曲线断层和次地震断层。本研究利用标记点过程的数学框架,用一组线段来近似二维断层网络。提出的随机模型(即 Candy 模型)包含简单的成对连接和邻近连接,以捕捉断层线段之间的相互作用。这种方法的新颖之处在于利用卷积神经网络生成的故障概率输入图像来调节随机模型。Metropolis-Hastings 算法用于生成各种故障网络配置方案,从而探索与 Candy 模型相关的模型空间并反映不确定性。从这些故障段配置中构建的概率水平集提供了对所获得的实现和模型参数的见解。空空间功能通过测试和量化生成的断层网络的空间变异性,根据现有的解释对其进行排序。该方法适用于北海中部的二维地震数据剖面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1