R. Venkatesan, C. Kumar, C. R. Balamurugan, Tomonobu Senjyu
{"title":"Enhancing power quality in grid-connected hybrid renewable energy systems using UPQC and optimized O-FOPID","authors":"R. Venkatesan, C. Kumar, C. R. Balamurugan, Tomonobu Senjyu","doi":"10.3389/fenrg.2024.1425412","DOIUrl":null,"url":null,"abstract":"Hybrid Renewable Energy Systems (HRES) have recently been proposed as a way to improve dependability and reduce losses in grid-connected load systems. This research study suggests a novel hybrid optimization technique that regulates UPQC in order to address the Power Quality (PQ) problems in the HRES system. The load system serves as the primary link between the battery energy storage systems (BESS), wind turbine (WT), and solar photovoltaic (PV) components of the HRES system. The major objective of the study is to reduce PQ issues and make up for the load requirement inside the HRES system. The addition of an Optimized Fractional Order Proportional Integral Derivative (O-FOPID) controller improves the efficiency of the UPQC. The Crow-Tunicate Swarm Optimization Algorithm (CT-SOA), an enhanced variant of the traditional Tunicate Swarm Optimization (TSA) and Crow Search Optimization (CSO), is used to optimize the control parameters of the FOPID controller. Utilizing the MATLAB/Simulink platform, the proposed method is put into practice, and the system’s performance is assessed for sag, swell, and Total Harmonic Distortion (THD). The THD values for the PI, FOPID, and CSA techniques, respectively, are 5.9038%, 4.9592%, and 3.7027%, under the sag condition. This validates the superiority of the proposed approach over existing approaches.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":"96 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1425412","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid Renewable Energy Systems (HRES) have recently been proposed as a way to improve dependability and reduce losses in grid-connected load systems. This research study suggests a novel hybrid optimization technique that regulates UPQC in order to address the Power Quality (PQ) problems in the HRES system. The load system serves as the primary link between the battery energy storage systems (BESS), wind turbine (WT), and solar photovoltaic (PV) components of the HRES system. The major objective of the study is to reduce PQ issues and make up for the load requirement inside the HRES system. The addition of an Optimized Fractional Order Proportional Integral Derivative (O-FOPID) controller improves the efficiency of the UPQC. The Crow-Tunicate Swarm Optimization Algorithm (CT-SOA), an enhanced variant of the traditional Tunicate Swarm Optimization (TSA) and Crow Search Optimization (CSO), is used to optimize the control parameters of the FOPID controller. Utilizing the MATLAB/Simulink platform, the proposed method is put into practice, and the system’s performance is assessed for sag, swell, and Total Harmonic Distortion (THD). The THD values for the PI, FOPID, and CSA techniques, respectively, are 5.9038%, 4.9592%, and 3.7027%, under the sag condition. This validates the superiority of the proposed approach over existing approaches.
期刊介绍:
Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria