New energy power system inertia weak position evaluation and frequency monitoring positioning

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Research Pub Date : 2024-07-29 DOI:10.3389/fenrg.2024.1418302
Jiaji Liu, Peng Di
{"title":"New energy power system inertia weak position evaluation and frequency monitoring positioning","authors":"Jiaji Liu, Peng Di","doi":"10.3389/fenrg.2024.1418302","DOIUrl":null,"url":null,"abstract":"The high proportion of new energy into the power grid leads to a significant uneven distribution trend of the inertia of the power grid, which seriously affects the safe and stable operation of the power grid. It is urgent to carry out the inertia evaluation of the new energy power system. In view of the insufficient accuracy of the equivalent inertia evaluation method of a single inertia center in evaluating large-scale power systems, this paper first proposed the equivalent inertia evaluation method of new energy power system in the region, and proposed the evaluation index of network area inertia to reveal the weak inertia network area. Secondly, for the inertia evaluation of new energy power system nodes, monitoring devices should be installed at each bus node. As the system construction cost is too high, a node inertia evaluation model of new energy power system is established to reduce the number of monitoring devices installed. Finally, in view of the unclear basis and inaccurate location of the frequency monitoring node selection model in the evaluation of equivalent inertia, a correlation model of equivalent inertia and node inertia is established to characterize the correlation between any node inertia and system equivalent inertia in the system. The consistency of the position of the equivalent inertia evaluation frequency monitoring node and the maximum inertia node of the system was derived, and the accuracy of the maximum inertia node as a frequency monitoring node was verified by the inertia center method and the frequency center method.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1418302","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The high proportion of new energy into the power grid leads to a significant uneven distribution trend of the inertia of the power grid, which seriously affects the safe and stable operation of the power grid. It is urgent to carry out the inertia evaluation of the new energy power system. In view of the insufficient accuracy of the equivalent inertia evaluation method of a single inertia center in evaluating large-scale power systems, this paper first proposed the equivalent inertia evaluation method of new energy power system in the region, and proposed the evaluation index of network area inertia to reveal the weak inertia network area. Secondly, for the inertia evaluation of new energy power system nodes, monitoring devices should be installed at each bus node. As the system construction cost is too high, a node inertia evaluation model of new energy power system is established to reduce the number of monitoring devices installed. Finally, in view of the unclear basis and inaccurate location of the frequency monitoring node selection model in the evaluation of equivalent inertia, a correlation model of equivalent inertia and node inertia is established to characterize the correlation between any node inertia and system equivalent inertia in the system. The consistency of the position of the equivalent inertia evaluation frequency monitoring node and the maximum inertia node of the system was derived, and the accuracy of the maximum inertia node as a frequency monitoring node was verified by the inertia center method and the frequency center method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新能源电力系统惯性弱位置评估与频率监测定位
新能源入网比例高,导致电网惯量分布趋势明显不均,严重影响电网安全稳定运行。开展新能源电力系统惯量评估迫在眉睫。针对单一惯性中心等效惯性评价方法在评价大型电力系统时准确性不足的问题,本文首先提出了区域内新能源电力系统等效惯性评价方法,并提出了网区惯性评价指标,以揭示惯性较弱的网区。其次,对于新能源电力系统节点的惯性评价,应在每个母线节点安装监测装置。由于系统建设成本过高,建立了新能源电力系统节点惯性评价模型,以减少监测装置的安装数量。最后,针对等效惯量评估中频率监测节点选择模型依据不明确、位置不准确的问题,建立等效惯量与节点惯量的相关性模型,表征系统中任意节点惯量与系统等效惯量的相关性。得出了等效惯量评估频率监测节点与系统最大惯量节点位置的一致性,并通过惯量中心法和频率中心法验证了最大惯量节点作为频率监测节点的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Energy Research
Frontiers in Energy Research Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
3.90
自引率
11.80%
发文量
1727
审稿时长
12 weeks
期刊介绍: Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria
期刊最新文献
Grid-integrated solutions for sustainable EV charging: a comparative study of renewable energy and battery storage systems Research on the impact of digitalization on energy companies’ green transition: new insights from China Multi-objective-based economic and emission dispatch with integration of wind energy sources using different optimization algorithms Demand-side management scenario analysis for the energy-efficient future of Pakistan: Bridging the gap between market interests and national priorities Modeling and scheduling of utility-scale energy storage toward high-share renewable coordination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1