Intrinsically Conductive and Cu-Functionalized Polymer-Composite Membranes as Gas Diffusion Electrodes for CO2 Electroreduction.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2025-01-14 Epub Date: 2024-10-24 DOI:10.1002/cssc.202401228
Ignacio Sanjuán, Vaibhav Kumbhar, Oleg Prymak, Mathias Ulbricht, Corina Andronescu, Lukas Fischer
{"title":"Intrinsically Conductive and Cu-Functionalized Polymer-Composite Membranes as Gas Diffusion Electrodes for CO<sub>2</sub> Electroreduction.","authors":"Ignacio Sanjuán, Vaibhav Kumbhar, Oleg Prymak, Mathias Ulbricht, Corina Andronescu, Lukas Fischer","doi":"10.1002/cssc.202401228","DOIUrl":null,"url":null,"abstract":"<p><p>We introduced a new class of gas diffusion electrodes (GDEs) with adjustable pore morphology. We fabricated intrinsically conductive polymer-composite membranes containing carbon filler, enabling a pore structure variation through film casting cum phase separation protocols. We further selectively functionalized specific pore regions of the membranes with Cu by a NaBH<sub>4</sub>-facilitated coating strategy. The as-obtained GDEs can facilitate the electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) at Cu active sites that are presented inside a defined and electrically conductive pore system. When employing them as free-standing cathodes in a CO<sub>2</sub> flow electrolyzer, we achieved >70 % Faradaic efficiencies for CO<sub>2</sub>RR products at up to 200 mA/cm<sup>2</sup>. We further demonstrated that deposition of a dense Cu layer on top of the membrane leads to obstruction of the underlying pore openings, inhibiting an excessive wetting of the pore pathways that transport gaseous CO<sub>2</sub>. However, the presentation of Cu inside the pore system of our novel membrane electrodes increased the C<sub>2</sub>H<sub>4</sub>/CO selectivity by a factor of up to 3 compared to Cu presented in the dense layer on top of the membrane. Additionally, we found that gaseous CO<sub>2</sub> could still access Cu in macropores after wetting with electrolyte, while CO<sub>2</sub>RR was completely suppressed in wetted nm-scale pores.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401228"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401228","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduced a new class of gas diffusion electrodes (GDEs) with adjustable pore morphology. We fabricated intrinsically conductive polymer-composite membranes containing carbon filler, enabling a pore structure variation through film casting cum phase separation protocols. We further selectively functionalized specific pore regions of the membranes with Cu by a NaBH4-facilitated coating strategy. The as-obtained GDEs can facilitate the electrochemical CO2 reduction reaction (CO2RR) at Cu active sites that are presented inside a defined and electrically conductive pore system. When employing them as free-standing cathodes in a CO2 flow electrolyzer, we achieved >70 % Faradaic efficiencies for CO2RR products at up to 200 mA/cm2. We further demonstrated that deposition of a dense Cu layer on top of the membrane leads to obstruction of the underlying pore openings, inhibiting an excessive wetting of the pore pathways that transport gaseous CO2. However, the presentation of Cu inside the pore system of our novel membrane electrodes increased the C2H4/CO selectivity by a factor of up to 3 compared to Cu presented in the dense layer on top of the membrane. Additionally, we found that gaseous CO2 could still access Cu in macropores after wetting with electrolyte, while CO2RR was completely suppressed in wetted nm-scale pores.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本征导电和铜官能化聚合物复合膜作为二氧化碳电还原的气体扩散电极。
我们推出了一类具有可调孔隙形态的新型气体扩散电极(GDE)。我们制造了含有碳填料的本征导电聚合物复合膜,通过铸膜和相分离协议实现了孔隙结构的变化。我们还通过 NaBH4 促进涂层策略,用铜对膜的特定孔隙区域进行了选择性功能化。获得的 GDEs 可在铜活性位点促进电化学二氧化碳还原反应(CO2RR),该活性位点位于确定的导电孔隙系统内。将它们用作二氧化碳流电解槽中的独立阴极时,我们在高达 200 mA/cm2 的条件下实现了二氧化碳还原反应产物大于 70% 的法拉第效率。我们进一步证明,在膜顶部沉积致密的铜层会导致底层孔隙受阻,从而抑制输送气态二氧化碳的孔隙通道的过度润湿。然而,与在膜顶部致密层中的铜相比,我们的新型膜电极孔隙系统中的铜可将 C2H4/CO 的选择性提高 3 倍。此外,我们还发现气态二氧化碳在被电解质润湿后仍能进入大孔中的铜,而在被润湿的纳米级孔隙中,CO2RR 被完全抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Demonstration of a Chemical Recycling Concept for Polybutylene Succinate containing Waste Substrates via Coupled Enzymatic/Electrochemical Processes. Investigating the effects of a high boiling point solvent in slot die-coated halide perovskite solar cells. Noble-Metal-Free ZnII-Anchored Pyrene-Based Covalent Organic Framework (COF) for Photocatalytic Fixation of CO2 from Dilute Gas into Bioactive 2-Oxazolidinones. Anionic ring-opening polymerization of 2-oxabicyclo[2.1.1]hexan-3-one: manipulating topology and conformation for circular polymer design. Toxicological Effectsof Metal-Doped Carbon Quantum Dots.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1