Implementation of a soft grading system for chemistry in a Moodle plugin: reaction handling

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-08-01 DOI:10.1186/s13321-024-00889-y
Louis Plyer, Gilles Marcou, Céline Perves, Fanny Bonachera, Alexander Varnek
{"title":"Implementation of a soft grading system for chemistry in a Moodle plugin: reaction handling","authors":"Louis Plyer,&nbsp;Gilles Marcou,&nbsp;Céline Perves,&nbsp;Fanny Bonachera,&nbsp;Alexander Varnek","doi":"10.1186/s13321-024-00889-y","DOIUrl":null,"url":null,"abstract":"<div><p>Here, we present a new method for evaluating questions on chemical reactions in the context of remote education. This method can be used when binary grading is not sufficient as some tolerance may be acceptable. In order to determine a grade, the developed workflow uses the pairwise similarity assessment of two considered reactions, each encoded by a single molecular graph with the help of the Condensed Graph of Reaction (CGR) approach. This workflow is part of the ChemMoodle project and is implemented as a Moodle Plugin. It uses the Chemdoodle engine for reaction drawing and visualization and communicates with a REST server calculating the similarity score using ISIDA fragment descriptors. The plugin is open-source, accessible in GitHub (https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_reacsimilarity) and on the Moodle plugin store (https://moodle.org/plugins/qtype_reacsimilarity?lang=en). Both similarity measures and fragmentation can be configured.</p><p><b>Scientific contribution</b></p><p> This work introduces an open-source method for evaluating chemical reaction questions within Moodle using the CGR approach. Our contribution provides a nuanced grading mechanism that accommodates acceptable tolerances in reaction assessments, enhancing the accuracy and flexibility of the grading process.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00889-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we present a new method for evaluating questions on chemical reactions in the context of remote education. This method can be used when binary grading is not sufficient as some tolerance may be acceptable. In order to determine a grade, the developed workflow uses the pairwise similarity assessment of two considered reactions, each encoded by a single molecular graph with the help of the Condensed Graph of Reaction (CGR) approach. This workflow is part of the ChemMoodle project and is implemented as a Moodle Plugin. It uses the Chemdoodle engine for reaction drawing and visualization and communicates with a REST server calculating the similarity score using ISIDA fragment descriptors. The plugin is open-source, accessible in GitHub (https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_reacsimilarity) and on the Moodle plugin store (https://moodle.org/plugins/qtype_reacsimilarity?lang=en). Both similarity measures and fragmentation can be configured.

Scientific contribution

This work introduces an open-source method for evaluating chemical reaction questions within Moodle using the CGR approach. Our contribution provides a nuanced grading mechanism that accommodates acceptable tolerances in reaction assessments, enhancing the accuracy and flexibility of the grading process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 Moodle 插件中实施化学软评分系统:反应处理。
在此,我们介绍一种在远程教育背景下评价化学反应问题的新方法。这种方法可用于二元评分不够充分的情况,因为可以接受一定的宽容度。为了确定一个等级,开发的工作流程使用了两个被考虑的反应的成对相似性评估,每个反应都由一个分子图进行编码,并借助反应的凝缩图(CGR)方法。该工作流程是 ChemMoodle 项目的一部分,以 Moodle 插件的形式实现。它使用 Chemdoodle 引擎进行反应绘图和可视化,并与使用 ISIDA 片段描述符计算相似性得分的 REST 服务器进行通信。该插件是开源的,可在 GitHub ( https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_reacsimilarity ) 和 Moodle 插件商店 ( https://moodle.org/plugins/qtype_reacsimilarity?lang=en ) 上访问。这项工作介绍了一种开源方法,用于在 Moodle 中使用 CGR 方法评估化学反应问题。我们的贡献是提供了一种细致入微的评分机制,它能在反应评估中考虑到可接受的容差,从而提高评分过程的准确性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
GT-NMR: a novel graph transformer-based approach for accurate prediction of NMR chemical shifts Suitability of large language models for extraction of high-quality chemical reaction dataset from patent literature Molecular identification via molecular fingerprint extraction from atomic force microscopy images A systematic review of deep learning chemical language models in recent era Accelerated hit identification with target evaluation, deep learning and automated labs: prospective validation in IRAK1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1