Maximilian G. Schuh, Davide Boldini, Annkathrin I. Bohne, Stephan A. Sieber
{"title":"Barlow Twins deep neural network for advanced 1D drug–target interaction prediction","authors":"Maximilian G. Schuh, Davide Boldini, Annkathrin I. Bohne, Stephan A. Sieber","doi":"10.1186/s13321-025-00952-2","DOIUrl":null,"url":null,"abstract":"<p>Accurate prediction of drug–target interactions is critical for advancing drug discovery. By reducing time and cost, machine learning and deep learning can accelerate this laborious discovery process. In a novel approach, BarlowDTI, we utilise the powerful Barlow Twins architecture for feature-extraction while considering the structure of the target protein. Our method achieves state-of-the-art predictive performance against multiple established benchmarks using only one-dimensional input. The use of our hybrid approach of deep learning and gradient boosting machine as the underlying predictor ensures fast and efficient predictions without the need for substantial computational resources. We also propose the use of an influence method to investigate how the model reaches its decision based on individual training samples. By comparing co-crystal structures, we find that BarlowDTI effectively exploits catalytically active and stabilising residues, highlighting the model’s ability to generalise from one-dimensional input data. In addition, we further benchmark new baselines against existing methods. Together, these innovations improve the efficiency and effectiveness of drug–target interactions predictions, providing robust tools for accelerating drug development and deepening the understanding of molecular interactions. Therefore, we provide an easy-to-use web interface that can be freely accessed at https://www.bio.nat.tum.de/oc2/barlowdti.</p><p>Our computationally efficient and effective hybrid approach, combining the deep learning model Barlow Twins and gradient boosting machines, outperforms state-of-the-art methods across multiple splits and benchmarks using only one-dimensional input. Furthermore, we advance the field by proposing an influence method that elucidates model decision-making, thereby providing deeper insights into molecular interactions and improving the interpretability of drug-target interactions predictions.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00952-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00952-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of drug–target interactions is critical for advancing drug discovery. By reducing time and cost, machine learning and deep learning can accelerate this laborious discovery process. In a novel approach, BarlowDTI, we utilise the powerful Barlow Twins architecture for feature-extraction while considering the structure of the target protein. Our method achieves state-of-the-art predictive performance against multiple established benchmarks using only one-dimensional input. The use of our hybrid approach of deep learning and gradient boosting machine as the underlying predictor ensures fast and efficient predictions without the need for substantial computational resources. We also propose the use of an influence method to investigate how the model reaches its decision based on individual training samples. By comparing co-crystal structures, we find that BarlowDTI effectively exploits catalytically active and stabilising residues, highlighting the model’s ability to generalise from one-dimensional input data. In addition, we further benchmark new baselines against existing methods. Together, these innovations improve the efficiency and effectiveness of drug–target interactions predictions, providing robust tools for accelerating drug development and deepening the understanding of molecular interactions. Therefore, we provide an easy-to-use web interface that can be freely accessed at https://www.bio.nat.tum.de/oc2/barlowdti.
Our computationally efficient and effective hybrid approach, combining the deep learning model Barlow Twins and gradient boosting machines, outperforms state-of-the-art methods across multiple splits and benchmarks using only one-dimensional input. Furthermore, we advance the field by proposing an influence method that elucidates model decision-making, thereby providing deeper insights into molecular interactions and improving the interpretability of drug-target interactions predictions.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.