Positional embeddings and zero-shot learning using BERT for molecular-property prediction

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2025-02-05 DOI:10.1186/s13321-025-00959-9
Medard Edmund Mswahili, JunHa Hwang, Jagath C. Rajapakse, Kyuri Jo, Young-Seob Jeong
{"title":"Positional embeddings and zero-shot learning using BERT for molecular-property prediction","authors":"Medard Edmund Mswahili,&nbsp;JunHa Hwang,&nbsp;Jagath C. Rajapakse,&nbsp;Kyuri Jo,&nbsp;Young-Seob Jeong","doi":"10.1186/s13321-025-00959-9","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, advancements in cheminformatics such as representation learning for chemical structures, deep learning (DL) for property prediction, data-driven discovery, and optimization of chemical data handling, have led to increased demands for handling chemical simplified molecular input line entry system (SMILES) data, particularly in text analysis tasks. These advancements have driven the need to optimize components like positional encoding and positional embeddings (PEs) in transformer model to better capture the sequential and contextual information embedded in molecular representations. SMILES data represent complex relationships among atoms or elements, rendering them critical for various learning tasks within the field of cheminformatics. This study addresses the critical challenge of encoding complex relationships among atoms in SMILES strings to explore various PEs within the transformer-based framework to increase the accuracy and generalization of molecular property predictions. The success of transformer-based models, such as the bidirectional encoder representations from transformer (BERT) models, in natural language processing tasks has sparked growing interest from the domain of cheminformatics. However, the performance of these models during pretraining and fine-tuning is significantly influenced by positional information such as PEs, which help in understanding the intricate relationships within sequences. Integrating position information within transformer architectures has emerged as a promising approach. This encoding mechanism provides essential supervision for modeling dependencies among elements situated at different positions within a given sequence. In this study, we first conduct pretraining experiments using various PEs to explore diverse methodologies for incorporating positional information into the BERT model for chemical text analysis using SMILES strings. Next, for each PE, we fine-tune the best-performing BERT (masked language modeling) model on downstream tasks for molecular-property prediction. Here, we use two molecular representations, SMILES and DeepSMILES, to comprehensively assess the potential and limitations of the PEs in zero-shot learning analysis, demonstrating the model’s proficiency in predicting properties of unseen molecular representations in the context of newly proposed and existing datasets.</p><p><b>Scientific contribution</b></p><p>This study explores the unexplored potential of PEs using BERT model for molecular property prediction. The study involved pretraining and fine-tuning the BERT model on various datasets related to COVID-19, bioassay data, and other molecular and biological properties using SMILES and DeepSMILES representations. The study details the pretraining architecture, fine-tuning datasets, and the performance of the BERT model with different PEs. It also explores zero-shot learning analysis and the model’s performance on various classification and regression tasks. In this study, newly proposed datasets from different domains were introduced during fine-tuning in addition to the existing and commonly used datasets. The study highlights the robustness of the BERT model in predicting chemical properties and its potential applications in cheminformatics and bioinformatics.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00959-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00959-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, advancements in cheminformatics such as representation learning for chemical structures, deep learning (DL) for property prediction, data-driven discovery, and optimization of chemical data handling, have led to increased demands for handling chemical simplified molecular input line entry system (SMILES) data, particularly in text analysis tasks. These advancements have driven the need to optimize components like positional encoding and positional embeddings (PEs) in transformer model to better capture the sequential and contextual information embedded in molecular representations. SMILES data represent complex relationships among atoms or elements, rendering them critical for various learning tasks within the field of cheminformatics. This study addresses the critical challenge of encoding complex relationships among atoms in SMILES strings to explore various PEs within the transformer-based framework to increase the accuracy and generalization of molecular property predictions. The success of transformer-based models, such as the bidirectional encoder representations from transformer (BERT) models, in natural language processing tasks has sparked growing interest from the domain of cheminformatics. However, the performance of these models during pretraining and fine-tuning is significantly influenced by positional information such as PEs, which help in understanding the intricate relationships within sequences. Integrating position information within transformer architectures has emerged as a promising approach. This encoding mechanism provides essential supervision for modeling dependencies among elements situated at different positions within a given sequence. In this study, we first conduct pretraining experiments using various PEs to explore diverse methodologies for incorporating positional information into the BERT model for chemical text analysis using SMILES strings. Next, for each PE, we fine-tune the best-performing BERT (masked language modeling) model on downstream tasks for molecular-property prediction. Here, we use two molecular representations, SMILES and DeepSMILES, to comprehensively assess the potential and limitations of the PEs in zero-shot learning analysis, demonstrating the model’s proficiency in predicting properties of unseen molecular representations in the context of newly proposed and existing datasets.

Scientific contribution

This study explores the unexplored potential of PEs using BERT model for molecular property prediction. The study involved pretraining and fine-tuning the BERT model on various datasets related to COVID-19, bioassay data, and other molecular and biological properties using SMILES and DeepSMILES representations. The study details the pretraining architecture, fine-tuning datasets, and the performance of the BERT model with different PEs. It also explores zero-shot learning analysis and the model’s performance on various classification and regression tasks. In this study, newly proposed datasets from different domains were introduced during fine-tuning in addition to the existing and commonly used datasets. The study highlights the robustness of the BERT model in predicting chemical properties and its potential applications in cheminformatics and bioinformatics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 BERT 进行位置嵌入和零点学习以预测分子特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
Barlow Twins deep neural network for advanced 1D drug–target interaction prediction Positional embeddings and zero-shot learning using BERT for molecular-property prediction Improving drug repositioning with negative data labeling using large language models PretoxTM: a text mining system for extracting treatment-related findings from preclinical toxicology reports MLinvitroTox reloaded for high-throughput hazard-based prioritization of high-resolution mass spectrometry data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1