{"title":"RNA-based logic for selective protein expression in senescent cells","authors":"Ward Jacobs , Masoomeh Khalifeh , Merijn Koot , Valentina Palacio-Castañeda , Jenny van Oostrum , Marleen Ansems , Wouter P.R. Verdurmen , Roland Brock","doi":"10.1016/j.biocel.2024.106636","DOIUrl":null,"url":null,"abstract":"<div><p>Cellular senescence is a cellular state characterized by irreversible growth arrest, resistance to apoptosis and secretion of inflammatory molecules, which is causally linked to the pathogenesis of many age-related diseases. Besides, there is accumulating evidence that selective removal of senescent cells can benefit therapies for cancer and fibrosis by modulating the inflammatory microenvironment. While the field of so-called senolytics has spawned promising small molecules and peptides for the selective removal of senescent cells, there is still no effective means to detect senescent cells <em>in vivo</em>, a prerequisite for understanding the role of senescence in pathophysiology and to assess the effectiveness of treatments aimed at removing senescent cells. Here, we present a strategy based on an mRNA logic circuit, that yields mRNA-dependent protein expression only when a senescence-specific miRNA signature is present. Following a validation of radiation-induced senescence induction in primary human fibroblasts, we identify miRNAs up- and downregulated in association with cellular senescence using RT-qPCR. Incorporating binding sites to these miRNAs into the 3’ untranslated regions of the mRNA logic circuit, we demonstrate the senescence-specific expression of EGFP for detection of senescent cells and of a constitutively active caspase-3 for selective removal. Altogether, our results pave the way for a novel approach to execute an mRNA-based programme specifically in senescent cells aimed at their detection or selective removal.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1357272524001286/pdfft?md5=127b2de5e49efd58380aad8dcd997168&pid=1-s2.0-S1357272524001286-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272524001286","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular senescence is a cellular state characterized by irreversible growth arrest, resistance to apoptosis and secretion of inflammatory molecules, which is causally linked to the pathogenesis of many age-related diseases. Besides, there is accumulating evidence that selective removal of senescent cells can benefit therapies for cancer and fibrosis by modulating the inflammatory microenvironment. While the field of so-called senolytics has spawned promising small molecules and peptides for the selective removal of senescent cells, there is still no effective means to detect senescent cells in vivo, a prerequisite for understanding the role of senescence in pathophysiology and to assess the effectiveness of treatments aimed at removing senescent cells. Here, we present a strategy based on an mRNA logic circuit, that yields mRNA-dependent protein expression only when a senescence-specific miRNA signature is present. Following a validation of radiation-induced senescence induction in primary human fibroblasts, we identify miRNAs up- and downregulated in association with cellular senescence using RT-qPCR. Incorporating binding sites to these miRNAs into the 3’ untranslated regions of the mRNA logic circuit, we demonstrate the senescence-specific expression of EGFP for detection of senescent cells and of a constitutively active caspase-3 for selective removal. Altogether, our results pave the way for a novel approach to execute an mRNA-based programme specifically in senescent cells aimed at their detection or selective removal.