An ancient role for CYP73 monooxygenases in phenylpropanoid biosynthesis and embryophyte development.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Journal Pub Date : 2024-09-01 Epub Date: 2024-08-01 DOI:10.1038/s44318-024-00181-7
Samuel Knosp, Lucie Kriegshauser, Kanade Tatsumi, Ludivine Malherbe, Mathieu Erhardt, Gertrud Wiedemann, Bénédicte Bakan, Takayuki Kohchi, Ralf Reski, Hugues Renault
{"title":"An ancient role for CYP73 monooxygenases in phenylpropanoid biosynthesis and embryophyte development.","authors":"Samuel Knosp, Lucie Kriegshauser, Kanade Tatsumi, Ludivine Malherbe, Mathieu Erhardt, Gertrud Wiedemann, Bénédicte Bakan, Takayuki Kohchi, Ralf Reski, Hugues Renault","doi":"10.1038/s44318-024-00181-7","DOIUrl":null,"url":null,"abstract":"<p><p>The phenylpropanoid pathway is one of the plant metabolic pathways most prominently linked to the transition to terrestrial life, but its evolution and early functions remain elusive. Here, we show that activity of the t-cinnamic acid 4-hydroxylase (C4H), the first plant-specific step in the pathway, emerged concomitantly with the CYP73 gene family in a common ancestor of embryophytes. Through structural studies, we identify conserved CYP73 residues, including a crucial arginine, that have supported C4H activity since the early stages of its evolution. We further demonstrate that impairing C4H function via CYP73 gene inactivation or inhibitor treatment in three bryophyte species-the moss Physcomitrium patens, the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis-consistently resulted in a shortage of phenylpropanoids and abnormal plant development. The latter could be rescued in the moss by exogenous supply of p-coumaric acid, the product of C4H. Our findings establish the emergence of the CYP73 gene family as a foundational event in the development of the plant phenylpropanoid pathway, and underscore the deep-rooted function of the C4H enzyme in embryophyte biology.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00181-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The phenylpropanoid pathway is one of the plant metabolic pathways most prominently linked to the transition to terrestrial life, but its evolution and early functions remain elusive. Here, we show that activity of the t-cinnamic acid 4-hydroxylase (C4H), the first plant-specific step in the pathway, emerged concomitantly with the CYP73 gene family in a common ancestor of embryophytes. Through structural studies, we identify conserved CYP73 residues, including a crucial arginine, that have supported C4H activity since the early stages of its evolution. We further demonstrate that impairing C4H function via CYP73 gene inactivation or inhibitor treatment in three bryophyte species-the moss Physcomitrium patens, the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis-consistently resulted in a shortage of phenylpropanoids and abnormal plant development. The latter could be rescued in the moss by exogenous supply of p-coumaric acid, the product of C4H. Our findings establish the emergence of the CYP73 gene family as a foundational event in the development of the plant phenylpropanoid pathway, and underscore the deep-rooted function of the C4H enzyme in embryophyte biology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CYP73 单氧化酶在苯丙类生物合成和胚胎植物发育中的古老作用。
苯丙类途径是植物代谢途径之一,与向陆地生命的过渡有着最显著的联系,但其进化和早期功能仍然难以捉摸。在这里,我们发现在胚状植物的共同祖先中,t-肉桂酸 4-羟化酶(C4H)的活性与 CYP73 基因家族同时出现,这是该途径中植物特有的第一步。通过结构研究,我们确定了 CYP73 的保守残基,包括一个关键的精氨酸,这些残基从 CYP73 进化的早期阶段就开始支持 C4H 的活性。我们进一步证明,通过 CYP73 基因失活或抑制剂处理损害 C4H 的功能,会一致导致三个叶绿体物种--苔藓 Physcomitrium patens、肝草 Marchantia polymorpha 和角草 Anthoceros agrestis--出现苯丙酸类物质短缺和植物发育异常。在苔藓中,通过外源供应 C4H 的产物对香豆酸,可以挽救后者。我们的研究结果证实,CYP73 基因家族的出现是植物苯丙氨酸途径发展过程中的一个奠基事件,并强调了 C4H 酶在胚状植物生物学中根深蒂固的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
期刊最新文献
Rab2A-mediated Golgi-lipid droplet interactions support very-low-density lipoprotein secretion in hepatocytes. Ezrin, radixin, and moesin are dispensable for macrophage migration and cellular cortex mechanics. PCPE-1, a brown adipose tissue-derived cytokine, promotes obesity-induced liver fibrosis. Bridging structural biology and clinical research through in-tissue cryo-electron tomography. IF1 is a cold-regulated switch of ATP synthase hydrolytic activity to support thermogenesis in brown fat.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1