Postoperative facial prediction for mandibular defect based on surface mesh deformation

IF 1.8 3区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE Journal of Stomatology Oral and Maxillofacial Surgery Pub Date : 2024-10-01 DOI:10.1016/j.jormas.2024.101973
Wen Du , Hao Wang , Chenche Zhao , Zhiming Cui , Jiaqi Li , Wenbo Zhang , Yao Yu , Xin Peng
{"title":"Postoperative facial prediction for mandibular defect based on surface mesh deformation","authors":"Wen Du ,&nbsp;Hao Wang ,&nbsp;Chenche Zhao ,&nbsp;Zhiming Cui ,&nbsp;Jiaqi Li ,&nbsp;Wenbo Zhang ,&nbsp;Yao Yu ,&nbsp;Xin Peng","doi":"10.1016/j.jormas.2024.101973","DOIUrl":null,"url":null,"abstract":"<div><div><em>Objectives:</em> This study aims to introduce a novel predictive model for the post-operative facial contours of patients with mandibular defect, addressing limitations in current methodologies that fail to preserve geometric features and lack interpretability.</div><div><em>Methods:</em> Utilizing surface mesh theory and deep learning, our model diverges from traditional point cloud approaches by employing surface triangular mesh grids. We extract latent variables using a Mesh Convolutional Restricted Boltzmann Machines (MCRBM) model to generate a three-dimensional deformation field, aiming to enhance geometric information preservation and interpretability.</div><div><em>Results:</em> Experimental evaluations of our model demonstrate a prediction accuracy of 91.2 %, which represents a significant improvement over traditional machine learning-based methods.</div><div><em>Conclusions:</em> The proposed model offers a promising new tool for pre-operative planning in oral and maxillofacial surgery. It significantly enhances the accuracy of post-operative facial contour predictions for mandibular defect reconstructions, providing substantial advancements over previous approaches.</div></div>","PeriodicalId":55993,"journal":{"name":"Journal of Stomatology Oral and Maxillofacial Surgery","volume":"125 5","pages":"Article 101973"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stomatology Oral and Maxillofacial Surgery","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468785524002192","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study aims to introduce a novel predictive model for the post-operative facial contours of patients with mandibular defect, addressing limitations in current methodologies that fail to preserve geometric features and lack interpretability.
Methods: Utilizing surface mesh theory and deep learning, our model diverges from traditional point cloud approaches by employing surface triangular mesh grids. We extract latent variables using a Mesh Convolutional Restricted Boltzmann Machines (MCRBM) model to generate a three-dimensional deformation field, aiming to enhance geometric information preservation and interpretability.
Results: Experimental evaluations of our model demonstrate a prediction accuracy of 91.2 %, which represents a significant improvement over traditional machine learning-based methods.
Conclusions: The proposed model offers a promising new tool for pre-operative planning in oral and maxillofacial surgery. It significantly enhances the accuracy of post-operative facial contour predictions for mandibular defect reconstructions, providing substantial advancements over previous approaches.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于表面网格变形的下颌骨缺损术后面部预测
目的:本研究旨在为下颌骨缺损患者的术后面部轮廓建立一个新的预测模型:本研究旨在为下颌骨缺损患者术后面部轮廓引入一个新的预测模型,解决当前方法无法保留几何特征和缺乏可解释性的局限性:利用曲面网格理论和深度学习,我们的模型采用曲面三角形网格,与传统的点云方法有所不同。我们使用网格卷积限制玻尔兹曼机(MCRBM)模型提取潜变量,生成三维变形场,旨在增强几何信息的保存和可解释性:结果:对我们的模型进行的实验评估表明,预测准确率达到 91.2%,与传统的基于机器学习的方法相比有了显著提高:结论:所提出的模型为口腔颌面外科的术前规划提供了一种前景广阔的新工具。结论:所提出的模型为口腔颌面外科的术前规划提供了一种很有前途的新工具,它大大提高了下颌缺损重建术后面部轮廓预测的准确性,比以前的方法有了很大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Stomatology Oral and Maxillofacial Surgery
Journal of Stomatology Oral and Maxillofacial Surgery Surgery, Dentistry, Oral Surgery and Medicine, Otorhinolaryngology and Facial Plastic Surgery
CiteScore
2.30
自引率
9.10%
发文量
0
审稿时长
23 days
期刊最新文献
Editorial board Contents Is panoramic radiography adequate for diagnosing coronoid process hyperplasia? A case series Vascular complications with necrotic lesions following filler injections: Literature systematic review Traumatic ulcerative granuloma with stromal eosinophilia (TUGSE): Case report of a 63-year-old male patient with a rare self-healing oral mucosal lesion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1