{"title":"Technoeconomic feasibility of photovoltaic recycling","authors":"Beatrice Crespo, Cailean Cavanaugh, Arron Potter, Stuart Yaniger, Gabrielle Gaustad, Collin Wilkinson","doi":"10.1111/ijag.16679","DOIUrl":null,"url":null,"abstract":"<p>Photovoltaic (PV) modules are a key technology to aid the imminent transition from carbon-based energy. End-of-life crystalline silicon PV modules produce a waste stream that is predominantly landfilled due to the recycling challenges associated with PV reuse economics. Current practices recycle the aluminum frame and repurpose the junction box but landfill the rest of the module. The primary challenge in recycling the remaining module is finding a technoeconomically viable method for separating the silicon and glass from the ethylene vinyl acetate (EVA) layers. This issue will rapidly expand with time as it is estimated that flat glass production for solar panels is currently unable to meet the demand for PV. Current literature suggests that chemical, thermal, and mechanical delamination offer economically feasible solutions under ideal circumstances. In this work we evaluate these methods using end-of-life panels and assess the economic viability. The technoeconomic study presented here suggests the most economically viable option for disposing of end-of-life solar panels, given current technology, is landfilling. Thermal delamination may offer an alternative route in the future. Financial incentives, which can be quantified with this work, may be required to kickstart PV recycling to help bridge externalities around environmental impact.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 4","pages":"381-390"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16679","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Photovoltaic (PV) modules are a key technology to aid the imminent transition from carbon-based energy. End-of-life crystalline silicon PV modules produce a waste stream that is predominantly landfilled due to the recycling challenges associated with PV reuse economics. Current practices recycle the aluminum frame and repurpose the junction box but landfill the rest of the module. The primary challenge in recycling the remaining module is finding a technoeconomically viable method for separating the silicon and glass from the ethylene vinyl acetate (EVA) layers. This issue will rapidly expand with time as it is estimated that flat glass production for solar panels is currently unable to meet the demand for PV. Current literature suggests that chemical, thermal, and mechanical delamination offer economically feasible solutions under ideal circumstances. In this work we evaluate these methods using end-of-life panels and assess the economic viability. The technoeconomic study presented here suggests the most economically viable option for disposing of end-of-life solar panels, given current technology, is landfilling. Thermal delamination may offer an alternative route in the future. Financial incentives, which can be quantified with this work, may be required to kickstart PV recycling to help bridge externalities around environmental impact.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.