Variable selection in modelling clustered data via within‐cluster resampling

Shangyuan Ye, Tingting Yu, Daniel A. Caroff, Susan S. Huang, Bo Zhang, Rui Wang
{"title":"Variable selection in modelling clustered data via within‐cluster resampling","authors":"Shangyuan Ye, Tingting Yu, Daniel A. Caroff, Susan S. Huang, Bo Zhang, Rui Wang","doi":"10.1002/cjs.11824","DOIUrl":null,"url":null,"abstract":"In many biomedical applications, there is a need to build risk‐adjustment models based on clustered data. However, methods for variable selection that are applicable to clustered discrete data settings with a large number of candidate variables and potentially large cluster sizes are lacking. We develop a new variable selection approach that combines within‐cluster resampling techniques with penalized likelihood methods to select variables for high‐dimensional clustered data. We derive an upper bound on the expected number of falsely selected variables, demonstrate the oracle properties of the proposed method and evaluate the finite sample performance of the method through extensive simulations. We illustrate the proposed approach using a colon surgical site infection data set consisting of 39,468 individuals from 149 hospitals to build risk‐adjustment models that account for both the main effects of various risk factors and their two‐way interactions.","PeriodicalId":501595,"journal":{"name":"The Canadian Journal of Statistics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjs.11824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many biomedical applications, there is a need to build risk‐adjustment models based on clustered data. However, methods for variable selection that are applicable to clustered discrete data settings with a large number of candidate variables and potentially large cluster sizes are lacking. We develop a new variable selection approach that combines within‐cluster resampling techniques with penalized likelihood methods to select variables for high‐dimensional clustered data. We derive an upper bound on the expected number of falsely selected variables, demonstrate the oracle properties of the proposed method and evaluate the finite sample performance of the method through extensive simulations. We illustrate the proposed approach using a colon surgical site infection data set consisting of 39,468 individuals from 149 hospitals to build risk‐adjustment models that account for both the main effects of various risk factors and their two‐way interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过簇内再采样建立聚类数据模型时的变量选择
在许多生物医学应用中,都需要根据聚类数据建立风险调整模型。然而,目前还缺乏适用于具有大量候选变量和潜在大聚类规模的聚类离散数据设置的变量选择方法。我们开发了一种新的变量选择方法,该方法结合了簇内重采样技术和惩罚似然法,可为高维聚类数据选择变量。我们推导出了误选变量的预期数量上限,证明了所提方法的甲骨文特性,并通过大量模拟评估了该方法的有限样本性能。我们使用由来自 149 家医院的 39468 人组成的结肠手术部位感染数据集来说明所提出的方法,并建立了考虑到各种风险因素的主效应及其双向交互作用的风险调整模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient semiparametric estimation in two‐sample comparison via semisupervised learning Distributed learning for kernel mode–based regression A new copula regression model for hierarchical data A framework for incorporating behavioural change into individual‐level spatial epidemic models Fast and scalable inference for spatial extreme value models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1