A framework for incorporating behavioural change into individual‐level spatial epidemic models

Madeline A. Ward, Rob Deardon, Lorna E. Deeth
{"title":"A framework for incorporating behavioural change into individual‐level spatial epidemic models","authors":"Madeline A. Ward, Rob Deardon, Lorna E. Deeth","doi":"10.1002/cjs.11828","DOIUrl":null,"url":null,"abstract":"Epidemic trajectories can be substantially impacted by people modifying their behaviours in response to changes in their perceived risk of spreading or contracting the disease. However, most infectious disease models assume a stable population behaviour. We present a flexible new class of models, called behavioural change individual‐level models (BC‐ILMs), that incorporate both individual‐level covariate information and a data‐driven behavioural change effect. Focusing on spatial BC‐ILMs, we consider four “alarm” functions to model the effect of behavioural change as a function of infection prevalence over time. Through simulation studies, we find that if behavioural change is present, using an alarm function, even if specified incorrectly, will result in an improvement in posterior predictive performance over a model that assumes stable population behaviour. The methods are applied to data from the 2001 U.K. foot and mouth disease epidemic. The results show some evidence of a behavioural change effect, although it may not meaningfully impact model fit compared to a simpler spatial ILM in this dataset.","PeriodicalId":501595,"journal":{"name":"The Canadian Journal of Statistics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjs.11828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epidemic trajectories can be substantially impacted by people modifying their behaviours in response to changes in their perceived risk of spreading or contracting the disease. However, most infectious disease models assume a stable population behaviour. We present a flexible new class of models, called behavioural change individual‐level models (BC‐ILMs), that incorporate both individual‐level covariate information and a data‐driven behavioural change effect. Focusing on spatial BC‐ILMs, we consider four “alarm” functions to model the effect of behavioural change as a function of infection prevalence over time. Through simulation studies, we find that if behavioural change is present, using an alarm function, even if specified incorrectly, will result in an improvement in posterior predictive performance over a model that assumes stable population behaviour. The methods are applied to data from the 2001 U.K. foot and mouth disease epidemic. The results show some evidence of a behavioural change effect, although it may not meaningfully impact model fit compared to a simpler spatial ILM in this dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将行为变化纳入个人层面空间流行病模型的框架
人们会根据自己对传播或感染疾病风险的感知变化而改变自己的行为,从而对流行病的轨迹产生重大影响。然而,大多数传染病模型都假定人群行为是稳定的。我们提出了一类灵活的新模型,称为行为变化个体水平模型(BC-ILMs),其中包含个体水平协变量信息和数据驱动的行为变化效应。以空间 BC-ILM 为重点,我们考虑了四种 "报警 "函数,将行为变化的影响作为感染率随时间变化的函数进行建模。通过模拟研究,我们发现,如果存在行为变化,使用报警函数,即使指定不正确,也会比假定人口行为稳定的模型提高后验预测性能。这些方法被应用于 2001 年英国口蹄疫疫情数据。结果显示了一些行为变化效应的证据,尽管与该数据集中更简单的空间 ILM 相比,行为变化效应可能不会对模型拟合产生有意义的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient semiparametric estimation in two‐sample comparison via semisupervised learning Distributed learning for kernel mode–based regression A new copula regression model for hierarchical data A framework for incorporating behavioural change into individual‐level spatial epidemic models Fast and scalable inference for spatial extreme value models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1