StyleRF-VolVis: Style Transfer of Neural Radiance Fields for Expressive Volume Visualization

Kaiyuan Tang, Chaoli Wang
{"title":"StyleRF-VolVis: Style Transfer of Neural Radiance Fields for Expressive Volume Visualization","authors":"Kaiyuan Tang, Chaoli Wang","doi":"arxiv-2408.00150","DOIUrl":null,"url":null,"abstract":"In volume visualization, visualization synthesis has attracted much attention\ndue to its ability to generate novel visualizations without following the\nconventional rendering pipeline. However, existing solutions based on\ngenerative adversarial networks often require many training images and take\nsignificant training time. Still, issues such as low quality, consistency, and\nflexibility persist. This paper introduces StyleRF-VolVis, an innovative style\ntransfer framework for expressive volume visualization (VolVis) via neural\nradiance field (NeRF). The expressiveness of StyleRF-VolVis is upheld by its\nability to accurately separate the underlying scene geometry (i.e., content)\nand color appearance (i.e., style), conveniently modify color, opacity, and\nlighting of the original rendering while maintaining visual content consistency\nacross the views, and effectively transfer arbitrary styles from reference\nimages to the reconstructed 3D scene. To achieve these, we design a base NeRF\nmodel for scene geometry extraction, a palette color network to classify\nregions of the radiance field for photorealistic editing, and an unrestricted\ncolor network to lift the color palette constraint via knowledge distillation\nfor non-photorealistic editing. We demonstrate the superior quality,\nconsistency, and flexibility of StyleRF-VolVis by experimenting with various\nvolume rendering scenes and reference images and comparing StyleRF-VolVis\nagainst other image-based (AdaIN), video-based (ReReVST), and NeRF-based (ARF\nand SNeRF) style rendering solutions.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In volume visualization, visualization synthesis has attracted much attention due to its ability to generate novel visualizations without following the conventional rendering pipeline. However, existing solutions based on generative adversarial networks often require many training images and take significant training time. Still, issues such as low quality, consistency, and flexibility persist. This paper introduces StyleRF-VolVis, an innovative style transfer framework for expressive volume visualization (VolVis) via neural radiance field (NeRF). The expressiveness of StyleRF-VolVis is upheld by its ability to accurately separate the underlying scene geometry (i.e., content) and color appearance (i.e., style), conveniently modify color, opacity, and lighting of the original rendering while maintaining visual content consistency across the views, and effectively transfer arbitrary styles from reference images to the reconstructed 3D scene. To achieve these, we design a base NeRF model for scene geometry extraction, a palette color network to classify regions of the radiance field for photorealistic editing, and an unrestricted color network to lift the color palette constraint via knowledge distillation for non-photorealistic editing. We demonstrate the superior quality, consistency, and flexibility of StyleRF-VolVis by experimenting with various volume rendering scenes and reference images and comparing StyleRF-VolVis against other image-based (AdaIN), video-based (ReReVST), and NeRF-based (ARF and SNeRF) style rendering solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
StyleRF-VolVis:神经辐射场的风格转移,实现富有表现力的体量可视化
在体量可视化领域,可视化合成因其无需遵循传统渲染管道即可生成新颖可视化效果而备受关注。然而,现有的基于生成对抗网络的解决方案往往需要许多训练图像,并耗费大量的训练时间。然而,低质量、一致性和灵活性等问题依然存在。本文介绍了 StyleRF-VolVis,这是一种通过神经辐射场(NeRF)实现富有表现力的体积可视化(VolVis)的创新风格转换框架。StyleRF-VolVis 的表现力体现在以下几个方面:准确分离底层场景几何图形(即内容)和色彩外观(即风格);在保持各视图视觉内容一致性的同时方便地修改原始渲染的色彩、不透明度和照明;以及有效地将任意风格从参考图像转移到重建的三维场景。为了实现这些目标,我们设计了用于场景几何提取的基本 NeRF 模型、用于逼真编辑的辐射场区域分类的调色板颜色网络,以及用于非逼真编辑的通过知识提炼解除调色板限制的无限制颜色网络。我们通过对各种体积渲染场景和参考图像进行实验,并将 StyleRF-VolVis 与其他基于图像(AdaIN)、基于视频(ReReVST)和基于 NeRF(ARF 和 SNeRF)的样式渲染解决方案进行比较,证明了 StyleRF-VolVis 的卓越质量、一致性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1