{"title":"Failure Analysis and Experiment of Shale Gas Gathering Pipeline","authors":"Yong Chen, Taiwei Luo, Dongying Meng, Qiliang Wang, Xiao Tao, Wenxin Pu, Ruifei Xie","doi":"10.1007/s12666-024-03328-6","DOIUrl":null,"url":null,"abstract":"<p>This paper explores the reasons for the perforation failure of the shale gas gathering pipeline in the E Gas Mine and proposes preventive measures. EDS experiment found that the corrosion products were mainly Fe<sub>2</sub>O<sub>3</sub>, FeS, and FeCO<sub>3</sub>. Shale gas contains 24.908 g/m<sup>3</sup> CO<sub>2</sub> and 0.384 g/m<sup>3</sup> H<sub>2</sub>S, and formation water contains 20.445 g/m<sup>3</sup> Cl<sup>−</sup>. Therefore, CO<sub>2</sub>/H<sub>2</sub>S corrosion has occurred in the pipeline, and Cl<sup>−</sup> exacerbated localized damage to the material matrix, accelerated corrosion of the pipeline. The base material was more corrosion resistant than the weld, but the weld was more erosion resistant than the base material. The CFD simulation results found that the main reason of pipeline erosion is that, the shale gas contains grit and the gas volume exceeds the designed gas volume. So, the perforation failure of the pipeline was a result of both corrosion and erosion, and the effect of erosion is stronger than that of CO<sub>2</sub>/H<sub>2</sub>S corrosion on the pipeline.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"82 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03328-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the reasons for the perforation failure of the shale gas gathering pipeline in the E Gas Mine and proposes preventive measures. EDS experiment found that the corrosion products were mainly Fe2O3, FeS, and FeCO3. Shale gas contains 24.908 g/m3 CO2 and 0.384 g/m3 H2S, and formation water contains 20.445 g/m3 Cl−. Therefore, CO2/H2S corrosion has occurred in the pipeline, and Cl− exacerbated localized damage to the material matrix, accelerated corrosion of the pipeline. The base material was more corrosion resistant than the weld, but the weld was more erosion resistant than the base material. The CFD simulation results found that the main reason of pipeline erosion is that, the shale gas contains grit and the gas volume exceeds the designed gas volume. So, the perforation failure of the pipeline was a result of both corrosion and erosion, and the effect of erosion is stronger than that of CO2/H2S corrosion on the pipeline.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.