{"title":"Targeting NMDA receptors with an antagonist is a promising therapeutic strategy for treating neurological disorders","authors":"","doi":"10.1016/j.bbr.2024.115173","DOIUrl":null,"url":null,"abstract":"<div><p>Glutamate activates the NMDARs, significantly affecting multiple processes such as learning, memory, synaptic integration, and excitatory transmission in the central nervous system. Uncontrolled activation of NMDARs is a significant contributor to synaptic dysfunction. Having a properly functioning NMDAR and synapse is crucial for maintaining neuronal communication. In addition, the dysfunction of NMDAR and synapse function could contribute to the development of neurological disorders at the neuronal level; hence, targeting NMDARs with antagonists in the fight against neurological disorders is a promising route. Recently published results from the animal study on different kinds of brain diseases like stroke, epilepsy, tinnitus, ataxia, Alzheimer’s disease, Parkinson's disease, and spinal cord injury have demonstrated promising therapeutic scopes. Several NMDA receptor antagonists, such as memantine, MK801, ketamine, ifenprodil, gacyclidine, amantadine, agmatine, etc., showed encouraging results against different brain disease mouse models. Given the unique expression of different subunits of the well-organized NMDA receptor system by neurons. It could potentially lead to the development of medications specifically targeting certain receptor subtypes. For a future researcher, conducting more targeted research and trials is crucial to fully understand and develop highly specific medications with good clinical effects and potential neuroprotective properties.</p></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824003292","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glutamate activates the NMDARs, significantly affecting multiple processes such as learning, memory, synaptic integration, and excitatory transmission in the central nervous system. Uncontrolled activation of NMDARs is a significant contributor to synaptic dysfunction. Having a properly functioning NMDAR and synapse is crucial for maintaining neuronal communication. In addition, the dysfunction of NMDAR and synapse function could contribute to the development of neurological disorders at the neuronal level; hence, targeting NMDARs with antagonists in the fight against neurological disorders is a promising route. Recently published results from the animal study on different kinds of brain diseases like stroke, epilepsy, tinnitus, ataxia, Alzheimer’s disease, Parkinson's disease, and spinal cord injury have demonstrated promising therapeutic scopes. Several NMDA receptor antagonists, such as memantine, MK801, ketamine, ifenprodil, gacyclidine, amantadine, agmatine, etc., showed encouraging results against different brain disease mouse models. Given the unique expression of different subunits of the well-organized NMDA receptor system by neurons. It could potentially lead to the development of medications specifically targeting certain receptor subtypes. For a future researcher, conducting more targeted research and trials is crucial to fully understand and develop highly specific medications with good clinical effects and potential neuroprotective properties.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.