{"title":"Multi-step framework for glaucoma diagnosis in retinal fundus images using deep learning.","authors":"Sanli Yi, Lingxiang Zhou","doi":"10.1007/s11517-024-03172-2","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma is one of the most common causes of blindness in the world. Screening glaucoma from retinal fundus images based on deep learning is a common method at present. In the diagnosis of glaucoma based on deep learning, the blood vessels within the optic disc interfere with the diagnosis, and there is also some pathological information outside the optic disc in fundus images. Therefore, integrating the original fundus image with the vessel-removed optic disc image can improve diagnostic efficiency. In this paper, we propose a novel multi-step framework named MSGC-CNN that can better diagnose glaucoma. In the framework, (1) we combine glaucoma pathological knowledge with deep learning model, fuse the features of original fundus image and optic disc region in which the interference of blood vessel is specifically removed by U-Net, and make glaucoma diagnosis based on the fused features. (2) Aiming at the characteristics of glaucoma fundus images, such as small amount of data, high resolution, and rich feature information, we design a new feature extraction network RA-ResNet and combined it with transfer learning. In order to verify our method, we conduct binary classification experiments on three public datasets, Drishti-GS, RIM-ONE-R3, and ACRIMA, with accuracy of 92.01%, 93.75%, and 97.87%. The results demonstrate a significant improvement over earlier results.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"1-13"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03172-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Glaucoma is one of the most common causes of blindness in the world. Screening glaucoma from retinal fundus images based on deep learning is a common method at present. In the diagnosis of glaucoma based on deep learning, the blood vessels within the optic disc interfere with the diagnosis, and there is also some pathological information outside the optic disc in fundus images. Therefore, integrating the original fundus image with the vessel-removed optic disc image can improve diagnostic efficiency. In this paper, we propose a novel multi-step framework named MSGC-CNN that can better diagnose glaucoma. In the framework, (1) we combine glaucoma pathological knowledge with deep learning model, fuse the features of original fundus image and optic disc region in which the interference of blood vessel is specifically removed by U-Net, and make glaucoma diagnosis based on the fused features. (2) Aiming at the characteristics of glaucoma fundus images, such as small amount of data, high resolution, and rich feature information, we design a new feature extraction network RA-ResNet and combined it with transfer learning. In order to verify our method, we conduct binary classification experiments on three public datasets, Drishti-GS, RIM-ONE-R3, and ACRIMA, with accuracy of 92.01%, 93.75%, and 97.87%. The results demonstrate a significant improvement over earlier results.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).