Measuring health literacy to inform actions to address health inequities: a cluster analysis approach based on the Australian national health literacy survey.

Christina Cheng, Shandell Elmer, Roy Batterham, Melanie Hawkins, Richard H Osborne
{"title":"Measuring health literacy to inform actions to address health inequities: a cluster analysis approach based on the Australian national health literacy survey.","authors":"Christina Cheng, Shandell Elmer, Roy Batterham, Melanie Hawkins, Richard H Osborne","doi":"10.1093/pubmed/fdae165","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Measuring health literacy can inform interventions to address health inequities. This study used cluster analysis to examine health literacy data to determine if it can provide more insightful information than standard descriptive analysis to better inform intervention development.</p><p><strong>Methods: </strong>Using data from the Australian National Health Survey (2018), this study compared descriptive analysis and cluster analysis results of two states-New South Wales (NSW) and Victoria-generated from the Health Literacy Questionnaire (HLQ). Based on the nine scale scores of the HLQ, a hierarchical cluster analysis using Ward's method for linkage was undertaken.</p><p><strong>Results: </strong>The number of NSW and Victoria respondents was 1018 and 923, respectively. The nine HLQ scale full sample mean scores from both states were similar. However, the cluster analyses identified 11 clusters for NSW and 12 clusters for Victoria. While six clusters from each state presented similar health literacy patterns, five and six clusters from NSW and Victoria, respectively, displayed unique health literacy patterns.</p><p><strong>Conclusions: </strong>The results demonstrate that descriptive analysis only provides an overview and may lead to one-size-fits-all interventions. The varying health literacy patterns among subgroups resulting from the cluster analysis pave the way to inform tailored actions to improve health equity.</p>","PeriodicalId":94107,"journal":{"name":"Journal of public health (Oxford, England)","volume":" ","pages":"e663-e674"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of public health (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pubmed/fdae165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Measuring health literacy can inform interventions to address health inequities. This study used cluster analysis to examine health literacy data to determine if it can provide more insightful information than standard descriptive analysis to better inform intervention development.

Methods: Using data from the Australian National Health Survey (2018), this study compared descriptive analysis and cluster analysis results of two states-New South Wales (NSW) and Victoria-generated from the Health Literacy Questionnaire (HLQ). Based on the nine scale scores of the HLQ, a hierarchical cluster analysis using Ward's method for linkage was undertaken.

Results: The number of NSW and Victoria respondents was 1018 and 923, respectively. The nine HLQ scale full sample mean scores from both states were similar. However, the cluster analyses identified 11 clusters for NSW and 12 clusters for Victoria. While six clusters from each state presented similar health literacy patterns, five and six clusters from NSW and Victoria, respectively, displayed unique health literacy patterns.

Conclusions: The results demonstrate that descriptive analysis only provides an overview and may lead to one-size-fits-all interventions. The varying health literacy patterns among subgroups resulting from the cluster analysis pave the way to inform tailored actions to improve health equity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
衡量健康素养,为解决健康不公平问题的行动提供信息:基于澳大利亚全国健康素养调查的聚类分析方法。
背景:测量健康素养可为干预措施提供信息,以解决健康不平等问题。本研究使用聚类分析来检查健康素养数据,以确定它是否能提供比标准描述性分析更有洞察力的信息,从而更好地为干预措施的制定提供依据:本研究利用澳大利亚全国健康调查(2018年)的数据,比较了两个州--新南威尔士州(NSW)和维多利亚州--从健康素养问卷(HLQ)中得出的描述性分析和聚类分析结果。根据健康素养问卷的九个量表得分,采用沃德联系法进行了分层聚类分析:新南威尔士州和维多利亚州的受访者人数分别为 1018 人和 923 人。两个州的九个 HLQ 量表全样本平均分相似。然而,聚类分析发现,新南威尔士州有 11 个聚类,维多利亚州有 12 个聚类。虽然每个州都有 6 个聚类呈现出相似的健康素养模式,但新南威尔士州和维多利亚州分别有 5 个和 6 个聚类呈现出独特的健康素养模式:结论:研究结果表明,描述性分析只能提供一个概况,可能会导致一刀切的干预措施。聚类分析所得出的不同亚群的健康素养模式为采取有针对性的行动提高健康公平性铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative analysis of 'virtual' SSP assessment clinics in the NHS bowel cancer screening programme in England. Effectiveness of text message reminder and motivational interview on adherence to methadone treatment in Vietnam: a randomized controlled trial. Implementing targeted vaccination activities to address inequalities in vaccination: a qualitative study. The politicization of influenza: partisan changes in flu vaccination before and after COVID-19. An application of matching algorithms to generalize small-area estimates of chronic pain prevalence to neighbourhoods across England.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1