Fourteen-year field experiment reveals neutral effects of N and P deposition on abundance and stoichiometric traits of the earthworm Pontoscolex corethrurus in tropical plantations
Zhifeng Shen , Xin Wang , Faming Wang , Jian Li , Jing Sun , Xiaoming Zou , Yiqing Li , Suli Li , Na Wang , Shenglei Fu , Weixin Zhang
{"title":"Fourteen-year field experiment reveals neutral effects of N and P deposition on abundance and stoichiometric traits of the earthworm Pontoscolex corethrurus in tropical plantations","authors":"Zhifeng Shen , Xin Wang , Faming Wang , Jian Li , Jing Sun , Xiaoming Zou , Yiqing Li , Suli Li , Na Wang , Shenglei Fu , Weixin Zhang","doi":"10.1016/j.soilbio.2024.109540","DOIUrl":null,"url":null,"abstract":"<div><p>The afforestation of tropical forests plays an important role in mitigating climate change. Exploring the impacts of nitrogen (N) and phosphorus (P) deposition on earthworm communities is significant for understanding the contributions of tropical forests to global change. A 14-year field experiment simulating N and P deposition at a station with 50-year-old tropical plantations was conducted. We found that the pantropical widespread exotic earthworm species <em>Pontoscolex corethrurus</em> was dominant, and it did not respond to exogenous N input. Moreover, P addition only increased the abundance of <em>P. corethrurus</em> after 14 years. Similarly, neither N addition nor P addition changed the stoichiometric traits of <em>P. corethrurus.</em> However, over the past decade, the abundance, biomass, and carbon (C), N, and P concentrations in the tissues of <em>P. corethrurus</em> have increased. A strong positive correlation between <em>P. corethrurus</em> population size and soil gram-negative (G<sup>−</sup>) bacteria biomass was observed, suggesting that <em>P. corethrurus</em> may benefit from the soil bacterial channel. This study ascertained that non-natural tropical lands may be resistant to N and P deposition in terms of earthworm related belowground processes, which would be helpful for fully understanding plant-soil biota feedback and their contributions to tropical plantation development and the mitigation of global climate change.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"197 ","pages":"Article 109540"},"PeriodicalIF":9.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038071724002293","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The afforestation of tropical forests plays an important role in mitigating climate change. Exploring the impacts of nitrogen (N) and phosphorus (P) deposition on earthworm communities is significant for understanding the contributions of tropical forests to global change. A 14-year field experiment simulating N and P deposition at a station with 50-year-old tropical plantations was conducted. We found that the pantropical widespread exotic earthworm species Pontoscolex corethrurus was dominant, and it did not respond to exogenous N input. Moreover, P addition only increased the abundance of P. corethrurus after 14 years. Similarly, neither N addition nor P addition changed the stoichiometric traits of P. corethrurus. However, over the past decade, the abundance, biomass, and carbon (C), N, and P concentrations in the tissues of P. corethrurus have increased. A strong positive correlation between P. corethrurus population size and soil gram-negative (G−) bacteria biomass was observed, suggesting that P. corethrurus may benefit from the soil bacterial channel. This study ascertained that non-natural tropical lands may be resistant to N and P deposition in terms of earthworm related belowground processes, which would be helpful for fully understanding plant-soil biota feedback and their contributions to tropical plantation development and the mitigation of global climate change.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.