How to maximize the joint benefits of timber production and carbon sequestration for rural areas? A case study of larch plantations in northeast China

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Carbon Balance and Management Pub Date : 2024-08-06 DOI:10.1186/s13021-024-00271-3
Lingbo Dong, Xueying Lin, Pete Bettinger, Zhaogang Liu
{"title":"How to maximize the joint benefits of timber production and carbon sequestration for rural areas? A case study of larch plantations in northeast China","authors":"Lingbo Dong,&nbsp;Xueying Lin,&nbsp;Pete Bettinger,&nbsp;Zhaogang Liu","doi":"10.1186/s13021-024-00271-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Implementing large-scale carbon sink afforestation may contribute to carbon neutrality targets and increase the economic benefits of forests in rural areas. However, how to manage planted forests in China to maximize the joint benefits of timber production and carbon sequestration is still unclear. Therefore, the present study quantified the effects of different rotation lengths, thinning treatments, site quality (SCI), stand density (SDI), and management costs on the joint benefits of carbon sequestration and timber production based on a stand-level model system developed for larch plantations in northeast China.</p><h3>Results</h3><p>The performances of the different scenarios on carbon stocks were satisfactory, where the variations in the outcomes of final carbon stocks could be explained by up to 90%. The joint benefits increased significantly with the increases of SDIs and SCIs, regardless of which rotation length and thinning treatments were evaluated. Early thinning treatments decreased the joint benefits significantly by approximately 131.53% and 32.16% of middle- and higher-SDIs, however longer rotations (60 years) could enlarge it by approximately 71.39% and 80.27% in scenarios with and without thinning when compared with a shorter rotation length (40 years). Discount rates and timber prices were the two most important variables affecting joint benefits, while the effects of carbon prices were not as significant as expected in the current trading market in China.</p><h3>Conclusions</h3><p>The management plans that promote longer rotations, higher stand densities, and no thinning treatments can maximize the joint benefits of carbon sequestration afforestation and timber production from larch plantations located in northeast China.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301996/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00271-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Implementing large-scale carbon sink afforestation may contribute to carbon neutrality targets and increase the economic benefits of forests in rural areas. However, how to manage planted forests in China to maximize the joint benefits of timber production and carbon sequestration is still unclear. Therefore, the present study quantified the effects of different rotation lengths, thinning treatments, site quality (SCI), stand density (SDI), and management costs on the joint benefits of carbon sequestration and timber production based on a stand-level model system developed for larch plantations in northeast China.

Results

The performances of the different scenarios on carbon stocks were satisfactory, where the variations in the outcomes of final carbon stocks could be explained by up to 90%. The joint benefits increased significantly with the increases of SDIs and SCIs, regardless of which rotation length and thinning treatments were evaluated. Early thinning treatments decreased the joint benefits significantly by approximately 131.53% and 32.16% of middle- and higher-SDIs, however longer rotations (60 years) could enlarge it by approximately 71.39% and 80.27% in scenarios with and without thinning when compared with a shorter rotation length (40 years). Discount rates and timber prices were the two most important variables affecting joint benefits, while the effects of carbon prices were not as significant as expected in the current trading market in China.

Conclusions

The management plans that promote longer rotations, higher stand densities, and no thinning treatments can maximize the joint benefits of carbon sequestration afforestation and timber production from larch plantations located in northeast China.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何最大限度地发挥木材生产和碳封存对农村地区的共同效益?中国东北落叶松种植园案例研究。
背景:实施大规模碳汇造林可能有助于实现碳中和目标,并增加农村地区森林的经济效益。然而,如何管理中国的人工林以最大限度地提高木材生产和碳汇的共同效益仍不清楚。因此,本研究基于为中国东北落叶松人工林开发的林分模型系统,量化了不同轮伐期、疏伐处理、林地质量(SCI)、林分密度(SDI)和管理成本对碳封存和木材生产联合效益的影响:结果:不同方案对碳储量的影响效果令人满意,最终碳储量结果的变化可解释率高达 90%。无论采用哪种轮伐期和稀植处理,随着SDI和SCI的增加,联合效益都会显著增加。然而,与较短的轮伐期(40 年)相比,较长的轮伐期(60 年)在有间伐和无间伐的情况下可将联合效益提高约 71.39% 和 80.27%。贴现率和木材价格是影响联合效益的两个最重要的变量,而碳价格的影响在中国目前的交易市场上并不像预期的那样显著:结论:延长轮伐期、提高林分密度、不进行间伐处理的管理方案可使中国东北落叶松人工林的碳汇造林和木材生产的联合效益最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
期刊最新文献
Advancing forest carbon projections requires improved convergence between ecological and economic models Integrating territorial pattern changes into the relationship between carbon sequestration and water yield in the Yangtze River Basin, China Improved aboveground biomass estimation and regional assessment with aerial lidar in California’s subalpine forests Land-use change, no-net-loss policies, and effects on carbon dioxide removals Urban land use optimization prediction considering carbon neutral development goals: a case study of Taihu Bay Core area in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1