On-site extraction of benzophenones from swimming pool water using hybrid tapes based on the integration of hydrophilic-lipophilic balance microparticles and an outer magnetic nanometric domain.
Ahmed Belhameid, Francisco Antonio Casado-Carmona, Adel Megriche, Ángela Inmaculada López-Lorente, Rafael Lucena, Soledad Cárdenas
{"title":"On-site extraction of benzophenones from swimming pool water using hybrid tapes based on the integration of hydrophilic-lipophilic balance microparticles and an outer magnetic nanometric domain.","authors":"Ahmed Belhameid, Francisco Antonio Casado-Carmona, Adel Megriche, Ángela Inmaculada López-Lorente, Rafael Lucena, Soledad Cárdenas","doi":"10.1007/s00604-024-06586-9","DOIUrl":null,"url":null,"abstract":"<p><p>An on-site extraction device is presented consisting of scotch tape modified with concentric domains of micrometric hydrophilic-lipophilic balance (HLB) particles surrounded by a ring of nanometric magnetic ones. On the one hand, HLB microparticles are readily available at the surface of the tape, exposed to interact with the target analytes, being responsible for the extraction capacity of the sorptive phase. On the other hand, the presence of magnetic nanoparticles enables the attachment of the modified tape onto a metallic screw via a magnet, which is then coupled to a wireless drill, enabling the stirring of the microextraction device. Both are simply fixed to the cost-effective, flexible, and versatile support, i.e., scotch tape, owing to their adhesive properties. The microextraction device has been applied to the determination of six benzophenones in swimming pool water samples. The variables that may affect the extraction process have been evaluated. Under the optimum conditions and using liquid chromatography-tandem mass spectrometry as the instrumental technique, the method provided a limit of detection of 0.03 µg L<sup>-1</sup>. The intra-day precision, evaluated at three different concentration levels and expressed as relative standard deviation, was lower than 10%, which also comprises the variability within single-use sorptive tapes. The accuracy, calculated with spiked samples and expressed as relative recovery, ranged from 71 to 138%. The method was applied to the analysis of swimming pool water, revealing the presence of such compounds.</p>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303577/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00604-024-06586-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An on-site extraction device is presented consisting of scotch tape modified with concentric domains of micrometric hydrophilic-lipophilic balance (HLB) particles surrounded by a ring of nanometric magnetic ones. On the one hand, HLB microparticles are readily available at the surface of the tape, exposed to interact with the target analytes, being responsible for the extraction capacity of the sorptive phase. On the other hand, the presence of magnetic nanoparticles enables the attachment of the modified tape onto a metallic screw via a magnet, which is then coupled to a wireless drill, enabling the stirring of the microextraction device. Both are simply fixed to the cost-effective, flexible, and versatile support, i.e., scotch tape, owing to their adhesive properties. The microextraction device has been applied to the determination of six benzophenones in swimming pool water samples. The variables that may affect the extraction process have been evaluated. Under the optimum conditions and using liquid chromatography-tandem mass spectrometry as the instrumental technique, the method provided a limit of detection of 0.03 µg L-1. The intra-day precision, evaluated at three different concentration levels and expressed as relative standard deviation, was lower than 10%, which also comprises the variability within single-use sorptive tapes. The accuracy, calculated with spiked samples and expressed as relative recovery, ranged from 71 to 138%. The method was applied to the analysis of swimming pool water, revealing the presence of such compounds.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.