Measuring the individualization potential of treatment individualization rules: Application to rules built with a new parametric interaction model for parallel-group clinical trials.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-08-01 Epub Date: 2024-08-06 DOI:10.1177/09622802241259172
Francisco J Diaz
{"title":"Measuring the individualization potential of treatment individualization rules: Application to rules built with a new parametric interaction model for parallel-group clinical trials.","authors":"Francisco J Diaz","doi":"10.1177/09622802241259172","DOIUrl":null,"url":null,"abstract":"<p><p>For personalized medicine, we propose a general method of evaluating the potential performance of an individualized treatment rule in future clinical applications with new patients. We focus on rules that choose the most beneficial treatment for the patient out of two active (nonplacebo) treatments, which the clinician will prescribe regularly to the patient after the decision. We develop a measure of the individualization potential (IP) of a rule. The IP compares the expected effectiveness of the rule in a future clinical individualization setting versus the effectiveness of not trying individualization. We illustrate our evaluation method by explaining how to measure the IP of a useful type of individualized rules calculated through a new parametric interaction model of data from parallel-group clinical trials with continuous responses. Our interaction model implies a structural equation model we use to estimate the rule and its IP. We examine the IP both theoretically and with simulations when the estimated individualized rule is put into practice in new patients. Our individualization approach was superior to outcome-weighted machine learning according to simulations. We also show connections with crossover and N-of-1 trials. As a real data application, we estimate a rule for the individualization of treatments for diabetic macular edema and evaluate its IP.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1355-1375"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241259172","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

For personalized medicine, we propose a general method of evaluating the potential performance of an individualized treatment rule in future clinical applications with new patients. We focus on rules that choose the most beneficial treatment for the patient out of two active (nonplacebo) treatments, which the clinician will prescribe regularly to the patient after the decision. We develop a measure of the individualization potential (IP) of a rule. The IP compares the expected effectiveness of the rule in a future clinical individualization setting versus the effectiveness of not trying individualization. We illustrate our evaluation method by explaining how to measure the IP of a useful type of individualized rules calculated through a new parametric interaction model of data from parallel-group clinical trials with continuous responses. Our interaction model implies a structural equation model we use to estimate the rule and its IP. We examine the IP both theoretically and with simulations when the estimated individualized rule is put into practice in new patients. Our individualization approach was superior to outcome-weighted machine learning according to simulations. We also show connections with crossover and N-of-1 trials. As a real data application, we estimate a rule for the individualization of treatments for diabetic macular edema and evaluate its IP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测量治疗个体化规则的个体化潜力:应用平行组临床试验的新参数交互模型建立的规则。
对于个性化医疗,我们提出了一种通用方法,用于评估个性化治疗规则在未来临床应用中对新患者的潜在表现。我们将重点放在从两种有效(非安慰剂)治疗方法中为患者选择最有益治疗方法的规则上,临床医生在做出决定后将定期为患者开具处方。我们开发了一种衡量规则个体化潜力(IP)的方法。IP 将该规则在未来临床个体化设置中的预期效果与不尝试个体化的效果进行比较。我们通过解释如何衡量一种有用的个体化规则的 IP 值来说明我们的评估方法,这种 IP 值是通过一种新的参数交互模型计算出来的,该模型的数据来自具有连续反应的平行组临床试验。我们的交互模型意味着一个结构方程模型,我们用它来估算规则及其 IP。当估计出的个体化规则在新患者身上付诸实践时,我们从理论和模拟两方面对 IP 进行了检验。根据模拟结果,我们的个性化方法优于结果加权机器学习。我们还展示了与交叉试验和 N-of-1 试验之间的联系。在实际数据应用中,我们估算了糖尿病黄斑水肿的个体化治疗规则,并对其IP进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses. Testing for a treatment effect in a selected subgroup. Enhancing DHA supplementation adherence: A Bayesian approach with finite mixture models and irregular interim schedules in adaptive trial designs. Analysis of recurrent event data with spatial random effects using a Bayesian approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1