Semiparametric inference of effective reproduction number dynamics from wastewater pathogen surveillance data.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae074
Isaac H Goldstein, Daniel M Parker, Sunny Jiang, Volodymyr M Minin
{"title":"Semiparametric inference of effective reproduction number dynamics from wastewater pathogen surveillance data.","authors":"Isaac H Goldstein, Daniel M Parker, Sunny Jiang, Volodymyr M Minin","doi":"10.1093/biomtc/ujae074","DOIUrl":null,"url":null,"abstract":"<p><p>Concentrations of pathogen genomes measured in wastewater have recently become available as a new data source to use when modeling the spread of infectious diseases. One promising use for this data source is inference of the effective reproduction number, the average number of individuals a newly infected person will infect. We propose a model where new infections arrive according to a time-varying immigration rate which can be interpreted as an average number of secondary infections produced by one infectious individual per unit time. This model allows us to estimate the effective reproduction number from concentrations of pathogen genomes, while avoiding difficulty to verify assumptions about the dynamics of the susceptible population. As a byproduct of our primary goal, we also produce a new model for estimating the effective reproduction number from case data using the same framework. We test this modeling framework in an agent-based simulation study with a realistic data generating mechanism which accounts for the time-varying dynamics of pathogen shedding. Finally, we apply our new model to estimating the effective reproduction number of SARS-CoV-2, the causative agent of COVID-19, in Los Angeles, CA, using pathogen RNA concentrations collected from a large wastewater treatment facility.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae074","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Concentrations of pathogen genomes measured in wastewater have recently become available as a new data source to use when modeling the spread of infectious diseases. One promising use for this data source is inference of the effective reproduction number, the average number of individuals a newly infected person will infect. We propose a model where new infections arrive according to a time-varying immigration rate which can be interpreted as an average number of secondary infections produced by one infectious individual per unit time. This model allows us to estimate the effective reproduction number from concentrations of pathogen genomes, while avoiding difficulty to verify assumptions about the dynamics of the susceptible population. As a byproduct of our primary goal, we also produce a new model for estimating the effective reproduction number from case data using the same framework. We test this modeling framework in an agent-based simulation study with a realistic data generating mechanism which accounts for the time-varying dynamics of pathogen shedding. Finally, we apply our new model to estimating the effective reproduction number of SARS-CoV-2, the causative agent of COVID-19, in Los Angeles, CA, using pathogen RNA concentrations collected from a large wastewater treatment facility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从废水病原体监测数据中推断有效繁殖数量动态的半参数。
最近,废水中测量到的病原体基因组浓度成为一种新的数据源,可用于模拟传染病的传播。这一数据源的一个很有前景的用途是推断有效繁殖数,即一个新感染者将感染的平均个体数。我们提出了一个新感染者根据随时间变化的移民率到达的模型,该移民率可解释为一个感染者在单位时间内产生的二次感染的平均数量。通过这一模型,我们可以从病原体基因组的浓度中估算出有效的繁殖数量,同时避免了验证易感人群动态假设的困难。作为主要目标的副产品,我们还利用相同的框架制作了一个新模型,用于从病例数据中估算有效繁殖数量。我们在一项基于代理的模拟研究中测试了这一建模框架,该研究采用了现实的数据生成机制,考虑了病原体脱落的时变动态。最后,我们利用从大型废水处理设施收集到的病原体 RNA 浓度,将新模型应用于估算 COVID-19 的病原体 SARS-CoV-2 在加利福尼亚州洛杉矶的有效繁殖数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Composite dyadic models for spatio-temporal data. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Bayesian network-guided sparse regression with flexible varying effects. Group sequential testing of a treatment effect using a surrogate marker. On network deconvolution for undirected graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1