Distributed model building and recursive integration for big spatial data modeling.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2025-01-07 DOI:10.1093/biomtc/ujae159
Emily C Hector, Brian J Reich, Ani Eloyan
{"title":"Distributed model building and recursive integration for big spatial data modeling.","authors":"Emily C Hector, Brian J Reich, Ani Eloyan","doi":"10.1093/biomtc/ujae159","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by the need for computationally tractable spatial methods in neuroimaging studies, we develop a distributed and integrated framework for estimation and inference of Gaussian process model parameters with ultra-high-dimensional likelihoods. We propose a shift in viewpoint from whole to local data perspectives that is rooted in distributed model building and integrated estimation and inference. The framework's backbone is a computationally and statistically efficient integration procedure that simultaneously incorporates dependence within and between spatial resolutions in a recursively partitioned spatial domain. Statistical and computational properties of our distributed approach are investigated theoretically and in simulations. The proposed approach is used to extract new insights into autism spectrum disorder from the autism brain imaging data exchange.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae159","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the need for computationally tractable spatial methods in neuroimaging studies, we develop a distributed and integrated framework for estimation and inference of Gaussian process model parameters with ultra-high-dimensional likelihoods. We propose a shift in viewpoint from whole to local data perspectives that is rooted in distributed model building and integrated estimation and inference. The framework's backbone is a computationally and statistically efficient integration procedure that simultaneously incorporates dependence within and between spatial resolutions in a recursively partitioned spatial domain. Statistical and computational properties of our distributed approach are investigated theoretically and in simulations. The proposed approach is used to extract new insights into autism spectrum disorder from the autism brain imaging data exchange.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大空间数据建模的分布式模型构建与递归集成。
由于神经影像学研究需要可计算的空间方法,我们开发了一个分布式和集成的框架,用于估计和推断具有超高维似然的高斯过程模型参数。我们提出了一种观点的转变,从整体到局部数据的观点,根植于分布式模型构建和集成的估计和推理。该框架的主干是一个计算和统计上有效的集成过程,同时在递归划分的空间域中合并空间分辨率内部和空间分辨率之间的依赖性。本文从理论和仿真两方面研究了分布式方法的统计和计算特性。该方法用于从自闭症脑成像数据交换中提取自闭症谱系障碍的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Gaussian processes for time series with lead-lag effects with applications to biology data. Weighted Q-learning for optimal dynamic treatment regimes with nonignorable missing covariates. Causal inference with cross-temporal design. Distributed model building and recursive integration for big spatial data modeling. Robust Bayesian graphical regression models for assessing tumor heterogeneity in proteomic networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1