{"title":"Room temperature synthesis of a chiral covalent organic framework core-shell composite for high-performance liquid chromatography enantioseparation","authors":"Yue Zhang, Yan-Rui Lu, Cheng Liu, An-Xu Ma, Zong-Hong Luo, Hong-Mei Zhou, Jun-Hui Zhang, Bang-Jin Wang, Sheng-Ming Xie, Li-Ming Yuan","doi":"10.1002/jssc.202400140","DOIUrl":null,"url":null,"abstract":"<p>In this article, chiral covalent organic framework core-shell composite CCOF-TpPa-Py@SiO<sub>2</sub> was facilely synthesized by induction at room temperature. The CCOF-TpPa-Py@SiO<sub>2</sub> core-shell composite was used as a chiral stationary phase for the separation of the racemates by high-performance liquid chromatography, which exhibits good separation performance for chiral compounds including ketones, alcohols, esters, epoxides, carboxylic acids, amides, and amines. The effects of analyte injection mass on the enantioseparation were studied. The reproducibility and stability of the CCOF-TpPa-Py@SiO<sub>2</sub> chiral column were explored. The intra-day (<i>n</i> = 5), inter-day (<i>n</i> = 5), and inter-column (<i>n</i> = 3) relative standard deviations for the migration times and resolution of benzoin were 0.32%–0.54%, 0.45%–0.61%, and 1.21%–1.53%, respectively. In addition, the chiral separation ability of the CCOF-TpPa-Py@SiO<sub>2</sub> chiral column (column A) was compared with that of the MDI-β-CD-Modified COF@SiO<sub>2</sub> (column B) as well as a commercial chiral column (Chiralpak AD-H). The chiral recognition ability of column A is complementary to that of column B and AD-H column. The resolution mechanism of CCOF-TpPa-Py@SiO<sub>2</sub> stationary phase towards chiral analyte was explored. Hence, the synthesis of CCOF-TpPa-Py@SiO<sub>2</sub> core-shell composite by induction at room temperature as chiral stationary phases for chromatographic separation has important research potential and application prospects.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"47 15","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400140","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, chiral covalent organic framework core-shell composite CCOF-TpPa-Py@SiO2 was facilely synthesized by induction at room temperature. The CCOF-TpPa-Py@SiO2 core-shell composite was used as a chiral stationary phase for the separation of the racemates by high-performance liquid chromatography, which exhibits good separation performance for chiral compounds including ketones, alcohols, esters, epoxides, carboxylic acids, amides, and amines. The effects of analyte injection mass on the enantioseparation were studied. The reproducibility and stability of the CCOF-TpPa-Py@SiO2 chiral column were explored. The intra-day (n = 5), inter-day (n = 5), and inter-column (n = 3) relative standard deviations for the migration times and resolution of benzoin were 0.32%–0.54%, 0.45%–0.61%, and 1.21%–1.53%, respectively. In addition, the chiral separation ability of the CCOF-TpPa-Py@SiO2 chiral column (column A) was compared with that of the MDI-β-CD-Modified COF@SiO2 (column B) as well as a commercial chiral column (Chiralpak AD-H). The chiral recognition ability of column A is complementary to that of column B and AD-H column. The resolution mechanism of CCOF-TpPa-Py@SiO2 stationary phase towards chiral analyte was explored. Hence, the synthesis of CCOF-TpPa-Py@SiO2 core-shell composite by induction at room temperature as chiral stationary phases for chromatographic separation has important research potential and application prospects.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.