I Ethem Karadirek, Asli Nur Rizvanoglu, Batuhan Okumus, Ozlem Cansu-Aldemir, Tugba Akdeniz
{"title":"Fate and transport of chlorine dioxide: Modeling chlorine dioxide in water distribution systems.","authors":"I Ethem Karadirek, Asli Nur Rizvanoglu, Batuhan Okumus, Ozlem Cansu-Aldemir, Tugba Akdeniz","doi":"10.1002/wer.11094","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to conduct a comprehensive analysis of switching disinfectants from sodium hypochlorite bleach to chlorine dioxide (ClO<sub>2</sub>) in the water distribution system of Geyikbayiri, Antalya. For this purpose, bulk decay rates of ClO<sub>2</sub> at various water temperatures were determined in laboratory studies. The study revealed ClO<sub>2</sub> bulk decay rates of 0.12639 day<sup>-1</sup>, 0.17848 day<sup>-1</sup>, and 0.19621 day<sup>-1</sup> at temperatures 15°C, 20°C, and 30°C, respectively. The EPANET, a widely employed computer program for simulating the extended-period behavior of hydraulic and water quality in pressurized pipes, was utilized for the analysis of the fate and transport of ClO<sub>2</sub>. A hydraulic model was first developed, calibrated, and verified using distinct data sets. The Hazen-Williams friction coefficient of the PSA was determined to be 120 by the trial-and-error method with a mean absolute error (MAE) of 0.408 m. A ClO<sub>2</sub> model was then integrated with the calibrated and verified hydraulic model, revealing a wall decay rate of 0.01 m/day and an average MAE of 0.034 mg/l. After calibration and verification of the ClO<sub>2</sub> model, several management scenarios were developed, and ClO<sub>2</sub> dosing rates were determined. The study showed that ClO<sub>2</sub> dosing rates of 0.40 mg/l and 0.45 mg/l should be applied to keep ClO<sub>2</sub> concentrations within certain limits. PRACTITIONER POINTS: Disinfectants must maintain a sufficient residual in water distribution systems. Chlorine dioxide requires less contact time and is not affected by pH fluctuations. Modeling serves as a decision-making tool for the management of disinfectants. Bulk and wall decay rates of chlorine dioxide are crucial for management strategies. Chlorine dioxide is a good alternative as a disinfectant in such systems.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11094"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11094","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to conduct a comprehensive analysis of switching disinfectants from sodium hypochlorite bleach to chlorine dioxide (ClO2) in the water distribution system of Geyikbayiri, Antalya. For this purpose, bulk decay rates of ClO2 at various water temperatures were determined in laboratory studies. The study revealed ClO2 bulk decay rates of 0.12639 day-1, 0.17848 day-1, and 0.19621 day-1 at temperatures 15°C, 20°C, and 30°C, respectively. The EPANET, a widely employed computer program for simulating the extended-period behavior of hydraulic and water quality in pressurized pipes, was utilized for the analysis of the fate and transport of ClO2. A hydraulic model was first developed, calibrated, and verified using distinct data sets. The Hazen-Williams friction coefficient of the PSA was determined to be 120 by the trial-and-error method with a mean absolute error (MAE) of 0.408 m. A ClO2 model was then integrated with the calibrated and verified hydraulic model, revealing a wall decay rate of 0.01 m/day and an average MAE of 0.034 mg/l. After calibration and verification of the ClO2 model, several management scenarios were developed, and ClO2 dosing rates were determined. The study showed that ClO2 dosing rates of 0.40 mg/l and 0.45 mg/l should be applied to keep ClO2 concentrations within certain limits. PRACTITIONER POINTS: Disinfectants must maintain a sufficient residual in water distribution systems. Chlorine dioxide requires less contact time and is not affected by pH fluctuations. Modeling serves as a decision-making tool for the management of disinfectants. Bulk and wall decay rates of chlorine dioxide are crucial for management strategies. Chlorine dioxide is a good alternative as a disinfectant in such systems.
期刊介绍:
Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.