{"title":"Propagation path of a flowering cherry (Cerasus × yedoensis) cultivar 'Somei-Yoshino' traced by somatic mutations.","authors":"Kenta Shirasawa, Tomoya Esumi, Akihiro Itai, Katsunori Hatakeyama, Tadashi Takashina, Takuji Yakuwa, Katsuhiko Sumitomo, Takeshi Kurokura, Eigo Fukai, Keiichi Sato, Takehiko Shimada, Katsuhiro Shiratake, Munetaka Hosokawa, Yuki Monden, Makoto Kusaba, Hidetoshi Ikegami, Sachiko Isobe","doi":"10.1093/dnares/dsae025","DOIUrl":null,"url":null,"abstract":"<p><p>In the long history of human relations with flowering cherry trees in Japan, 'Somei-Yoshino' occupies an exceptional position among a variety of flowering trees: it is a self-incompatible interspecific hybrid but has been enthusiastically planted by grafting throughout Japan, due most likely to its flamboyant appearance upon full bloom. Thus, 'Somei-Yoshino' gives us a rare opportunity to trace and investigate the occurrence and distribution of somatic mutations within a single plant species through analysis of the genomes of the clonally propagated trees grown under a variety of geographical and artificial environments. In the studies presented here, a total of 46 samples of 'Somei-Yoshino' trees were collected and their genomes were analysed. We identified 684 single nucleotide mutations, of which 71 were present in more than two samples. Clustering analysis of the mutations indicated that the 46 samples were classified into eight groups, four of which included 36 of the 46 samples analysed. Interestingly, all the four tree samples collected in Ueno Park of Tokyo were members of the four groups mentioned above. Based on comparative analysis of their mutations, one of the four trees growing in Ueno Park was concluded to be the closest to the original ancestor. We propose that somatic mutations may be used as tracers to establish the ancestral relationship amongst clonally propagated individuals.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsae025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
In the long history of human relations with flowering cherry trees in Japan, 'Somei-Yoshino' occupies an exceptional position among a variety of flowering trees: it is a self-incompatible interspecific hybrid but has been enthusiastically planted by grafting throughout Japan, due most likely to its flamboyant appearance upon full bloom. Thus, 'Somei-Yoshino' gives us a rare opportunity to trace and investigate the occurrence and distribution of somatic mutations within a single plant species through analysis of the genomes of the clonally propagated trees grown under a variety of geographical and artificial environments. In the studies presented here, a total of 46 samples of 'Somei-Yoshino' trees were collected and their genomes were analysed. We identified 684 single nucleotide mutations, of which 71 were present in more than two samples. Clustering analysis of the mutations indicated that the 46 samples were classified into eight groups, four of which included 36 of the 46 samples analysed. Interestingly, all the four tree samples collected in Ueno Park of Tokyo were members of the four groups mentioned above. Based on comparative analysis of their mutations, one of the four trees growing in Ueno Park was concluded to be the closest to the original ancestor. We propose that somatic mutations may be used as tracers to establish the ancestral relationship amongst clonally propagated individuals.
期刊介绍:
DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.