Yusi Fu, Swati Agrawal, Daniel R Snyder, Shiwei Yin, Na Zhong, James A Grunkemeyer, Nicholas Dietz, Ryan Corlett, Laura A Hansen, Al-Refaie Waddah, Kalyana C Nandipati, Jun Xia
{"title":"Transcriptomic changes and gene fusions during the progression from Barrett's esophagus to esophageal adenocarcinoma.","authors":"Yusi Fu, Swati Agrawal, Daniel R Snyder, Shiwei Yin, Na Zhong, James A Grunkemeyer, Nicholas Dietz, Ryan Corlett, Laura A Hansen, Al-Refaie Waddah, Kalyana C Nandipati, Jun Xia","doi":"10.1186/s40364-024-00623-8","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of esophageal adenocarcinoma (EAC) has surged by 600% in recent decades, with a dismal 5-year survival rate of just 15%. Barrett's esophagus (BE), affecting about 2% of the population, raises the risk of EAC by 40-fold. Despite this, the transcriptomic changes during the BE to EAC progression remain unclear. Our study addresses this gap through comprehensive transcriptomic profiling to identify key mRNA signatures and genomic alterations, such as gene fusions. We performed RNA-sequencing on BE and EAC tissues from 8 individuals, followed by differential gene expression, pathway and network analysis, and gene fusion prediction. We identified mRNA changes during the BE-to-EAC transition and validated our results with single-cell RNA-seq datasets. We observed upregulation of keratin family members in EAC and confirmed increased levels of keratin 14 (KRT14) using immunofluorescence. More differentiated BE marker genes are downregulated during progression to EAC, suggesting undifferentiated BE subpopulations contribute to EAC. We also identified several gene fusions absent in paired BE and normal esophagus but present in EAC. Our findings are critical for the BE-to-EAC transition and have the potential to promote early diagnosis, prevention, and improved treatment strategies for EAC.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"12 1","pages":"78"},"PeriodicalIF":9.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-024-00623-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The incidence of esophageal adenocarcinoma (EAC) has surged by 600% in recent decades, with a dismal 5-year survival rate of just 15%. Barrett's esophagus (BE), affecting about 2% of the population, raises the risk of EAC by 40-fold. Despite this, the transcriptomic changes during the BE to EAC progression remain unclear. Our study addresses this gap through comprehensive transcriptomic profiling to identify key mRNA signatures and genomic alterations, such as gene fusions. We performed RNA-sequencing on BE and EAC tissues from 8 individuals, followed by differential gene expression, pathway and network analysis, and gene fusion prediction. We identified mRNA changes during the BE-to-EAC transition and validated our results with single-cell RNA-seq datasets. We observed upregulation of keratin family members in EAC and confirmed increased levels of keratin 14 (KRT14) using immunofluorescence. More differentiated BE marker genes are downregulated during progression to EAC, suggesting undifferentiated BE subpopulations contribute to EAC. We also identified several gene fusions absent in paired BE and normal esophagus but present in EAC. Our findings are critical for the BE-to-EAC transition and have the potential to promote early diagnosis, prevention, and improved treatment strategies for EAC.
Biomarker ResearchBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍:
Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.