Capsaicin-insensitivity of TRPV1-R575D mutant located at the lipid-water-interface region can be rescued by either extracellular Ca2+-chelation or cholesterol reduction
Sushama Mohanta , Nilesh Kumar Das , Somdatta Saha , Chandan Goswami
{"title":"Capsaicin-insensitivity of TRPV1-R575D mutant located at the lipid-water-interface region can be rescued by either extracellular Ca2+-chelation or cholesterol reduction","authors":"Sushama Mohanta , Nilesh Kumar Das , Somdatta Saha , Chandan Goswami","doi":"10.1016/j.neuint.2024.105826","DOIUrl":null,"url":null,"abstract":"<div><p>TRPV1 acts as a unique polymodal ion channel having distinct structure and gating properties. In this context, TRPV1-R575D represents a special mutant located at the inner lipid-water-interface (LWI) region that has less possibility of interaction with membrane cholesterol. In control conditions, this lab-generated mutant of TRPV1 shows no “ligand-sensitivity”, reduced surface expression, reduced localization in the lipid rafts, yet induces high cellular lethality. Notably, the cellular lethality induced by TRPV1-R575D expression can be rescued by adding 5′I-RTX (a specific inhibitor of TRPV1) or by introducing another mutation in the next position, i.e. in TRPV1-R575D/D576R. In this work we characterized TRPV1-R575D and TRPV1-R575D/D576R mutants in different cellular conditions and compared with the TRPV1-WT. We report that the “ligand-insensitivity” of TRPV1-R575D can be rescued in certain conditions, such as by chelation of extracellular Ca<sup>2+</sup>, or by reduction of the membrane cholesterol. Here we show that Ca<sup>2+</sup> plays an important role in the channel gating of TRPV1-WT as well as LWI mutants (TRPV1-R575D, TRPV1-R575D/D576R). However, chelation of intracellular Ca<sup>2+</sup> or depletion of ER Ca<sup>2+</sup> did not have a significant effect on the TRPV1-R575D. Certain properties related to channel gating of mutant TRPV1-R575D/D576R can be rescued partially or fully in a context -dependent manner. Cholesterol depletion also alters these properties. Our data suggests that lower intracellular basal Ca<sup>2+</sup> acts as a pre-requisite for further opening of TRPV1-R575D. These findings enable better understanding of the structure-function relationship of TRPV1 and may be critical in comprehending the channelopathies induced by other homologous thermosensitive TRPVs.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"179 ","pages":"Article 105826"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018624001530","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
TRPV1 acts as a unique polymodal ion channel having distinct structure and gating properties. In this context, TRPV1-R575D represents a special mutant located at the inner lipid-water-interface (LWI) region that has less possibility of interaction with membrane cholesterol. In control conditions, this lab-generated mutant of TRPV1 shows no “ligand-sensitivity”, reduced surface expression, reduced localization in the lipid rafts, yet induces high cellular lethality. Notably, the cellular lethality induced by TRPV1-R575D expression can be rescued by adding 5′I-RTX (a specific inhibitor of TRPV1) or by introducing another mutation in the next position, i.e. in TRPV1-R575D/D576R. In this work we characterized TRPV1-R575D and TRPV1-R575D/D576R mutants in different cellular conditions and compared with the TRPV1-WT. We report that the “ligand-insensitivity” of TRPV1-R575D can be rescued in certain conditions, such as by chelation of extracellular Ca2+, or by reduction of the membrane cholesterol. Here we show that Ca2+ plays an important role in the channel gating of TRPV1-WT as well as LWI mutants (TRPV1-R575D, TRPV1-R575D/D576R). However, chelation of intracellular Ca2+ or depletion of ER Ca2+ did not have a significant effect on the TRPV1-R575D. Certain properties related to channel gating of mutant TRPV1-R575D/D576R can be rescued partially or fully in a context -dependent manner. Cholesterol depletion also alters these properties. Our data suggests that lower intracellular basal Ca2+ acts as a pre-requisite for further opening of TRPV1-R575D. These findings enable better understanding of the structure-function relationship of TRPV1 and may be critical in comprehending the channelopathies induced by other homologous thermosensitive TRPVs.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.