Paola Moyano-Gómez, Jukka V. Lehtonen, Olli T. Pentikäinen, Pekka A. Postila
{"title":"Building shape-focused pharmacophore models for effective docking screening","authors":"Paola Moyano-Gómez, Jukka V. Lehtonen, Olli T. Pentikäinen, Pekka A. Postila","doi":"10.1186/s13321-024-00857-6","DOIUrl":null,"url":null,"abstract":"<p>The performance of molecular docking can be improved by comparing the shape similarity of the flexibly sampled poses against the target proteins’ inverted binding cavities. The effectiveness of these pseudo-ligands or negative image-based models in docking rescoring is boosted further by performing enrichment-driven optimization. Here, we introduce a novel shape-focused pharmacophore modeling algorithm O-LAP that generates a new class of cavity-filling models by clumping together overlapping atomic content via pairwise distance graph clustering. Top-ranked poses of flexibly docked active ligands were used as the modeling input and multiple alternative clustering settings were benchmark-tested thoroughly with five demanding drug targets using random training/test divisions. In docking rescoring, the O-LAP modeling typically improved massively on the default docking enrichment; furthermore, the results indicate that the clustered models work well in rigid docking. The C+ +/Qt5-based algorithm O-LAP is released under the GNU General Public License v3.0 via GitHub (https://github.com/jvlehtonen/overlap-toolkit).</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00857-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00857-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of molecular docking can be improved by comparing the shape similarity of the flexibly sampled poses against the target proteins’ inverted binding cavities. The effectiveness of these pseudo-ligands or negative image-based models in docking rescoring is boosted further by performing enrichment-driven optimization. Here, we introduce a novel shape-focused pharmacophore modeling algorithm O-LAP that generates a new class of cavity-filling models by clumping together overlapping atomic content via pairwise distance graph clustering. Top-ranked poses of flexibly docked active ligands were used as the modeling input and multiple alternative clustering settings were benchmark-tested thoroughly with five demanding drug targets using random training/test divisions. In docking rescoring, the O-LAP modeling typically improved massively on the default docking enrichment; furthermore, the results indicate that the clustered models work well in rigid docking. The C+ +/Qt5-based algorithm O-LAP is released under the GNU General Public License v3.0 via GitHub (https://github.com/jvlehtonen/overlap-toolkit).
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.