{"title":"Ex-ante expected changes in ESG and future stock returns based on machine learning","authors":"","doi":"10.1016/j.bar.2024.101457","DOIUrl":null,"url":null,"abstract":"<div><div>This study has two primary objectives. Firstly, it enhances the reliability and transparency of machine-learning-based models for predicting future changes in environmental, social and governance (ESG) performance. Secondly, it explores the relationship between ex-ante expected changes in ESG and future stock returns. This study collects 3258 STOXX Europe 600 firm-year observations. In the ESG prediction phase, two machine learning algorithms (logistic regression and random forest) are utilised to develop ESG forecasting models. Hyperparameter optimisation and walk-forward validation techniques are employed to address issues of underestimation and information leakage. The machine-learning-based ESG forecasting models are evaluated using three metrics: accuracy, area under the curve (AUC) and area under the precision-recall curve (AUPR). Subsequently, this study investigates the relationship between ex-ante expected ESG changes and future stock returns using the predicted ESG changes. A positive correlation is found between ex-ante expected ESG changes and future stock returns. The supplementary tests also reveal that this positive relationship is highly and statistically significant among large firms and after the COVID-19 pandemic. Moreover, this study introduces a robust and transparent approach for constructing effective machine-learning-based ESG forecasting models using hyperparameter optimisation and walk-forward validation. Additionally, traditional regression analyses are modernised by incorporating machine-learning-predicted independent variables. <span>Furthermore</span>, the findings provide empirical support for stakeholder, agency and resource-based theories. Finally, practical insights are provided to facilitate ESG-focused investment portfolio decision making.</div></div>","PeriodicalId":47996,"journal":{"name":"British Accounting Review","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Accounting Review","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089083892400221X","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study has two primary objectives. Firstly, it enhances the reliability and transparency of machine-learning-based models for predicting future changes in environmental, social and governance (ESG) performance. Secondly, it explores the relationship between ex-ante expected changes in ESG and future stock returns. This study collects 3258 STOXX Europe 600 firm-year observations. In the ESG prediction phase, two machine learning algorithms (logistic regression and random forest) are utilised to develop ESG forecasting models. Hyperparameter optimisation and walk-forward validation techniques are employed to address issues of underestimation and information leakage. The machine-learning-based ESG forecasting models are evaluated using three metrics: accuracy, area under the curve (AUC) and area under the precision-recall curve (AUPR). Subsequently, this study investigates the relationship between ex-ante expected ESG changes and future stock returns using the predicted ESG changes. A positive correlation is found between ex-ante expected ESG changes and future stock returns. The supplementary tests also reveal that this positive relationship is highly and statistically significant among large firms and after the COVID-19 pandemic. Moreover, this study introduces a robust and transparent approach for constructing effective machine-learning-based ESG forecasting models using hyperparameter optimisation and walk-forward validation. Additionally, traditional regression analyses are modernised by incorporating machine-learning-predicted independent variables. Furthermore, the findings provide empirical support for stakeholder, agency and resource-based theories. Finally, practical insights are provided to facilitate ESG-focused investment portfolio decision making.
期刊介绍:
The British Accounting Review*is pleased to publish original scholarly papers across the whole spectrum of accounting and finance. The journal is eclectic and pluralistic and contributions are welcomed across a wide range of research methodologies (e.g. analytical, archival, experimental, survey and qualitative case methods) and topics (e.g. financial accounting, management accounting, finance and financial management, auditing, public sector accounting, social and environmental accounting; accounting education and accounting history), evidence from UK and non-UK sources are equally acceptable.