{"title":"Reorganizing chromatin by cellular deformation","authors":"Sarthak Gupta , Maxx Swoger , Renita Saldanha , J.M. Schwarz , Alison E. Patteson","doi":"10.1016/j.ceb.2024.102408","DOIUrl":null,"url":null,"abstract":"<div><p>Biologists have the capability to edit a genome at the nanometer scale and then observe whether or not the edit affects the structure of a developing organ or organism at the centimeter scale. Our understanding of the underlying mechanisms driving this emergent phenomenon from a multiscale perspective remains incomplete. This review focuses predominantly on recent experimental developments in uncovering the mechanical interplay between the chromatin and cell scale since mechanics plays a major role in determining nuclear, cellular, and tissue structure. Here, we discuss the generation and transmission of forces through the cytoskeleton, affecting chromatin diffusivity and organization. Decoding such pieces of these multiscale connections lays the groundwork for solving the genotype-to-phenotype puzzle in biology.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102408"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000875","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biologists have the capability to edit a genome at the nanometer scale and then observe whether or not the edit affects the structure of a developing organ or organism at the centimeter scale. Our understanding of the underlying mechanisms driving this emergent phenomenon from a multiscale perspective remains incomplete. This review focuses predominantly on recent experimental developments in uncovering the mechanical interplay between the chromatin and cell scale since mechanics plays a major role in determining nuclear, cellular, and tissue structure. Here, we discuss the generation and transmission of forces through the cytoskeleton, affecting chromatin diffusivity and organization. Decoding such pieces of these multiscale connections lays the groundwork for solving the genotype-to-phenotype puzzle in biology.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.