NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions.

IF 1.4 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIP Advances Pub Date : 2024-08-07 eCollection Date: 2024-08-01 DOI:10.1063/5.0216979
Marc D Ferro, Christopher M Proctor, Alexander Gonzalez, Sriram Jayabal, Eric Zhao, Maxwell Gagnon, Andrea Slézia, Jolien Pas, Gerwin Dijk, Mary J Donahue, Adam Williamson, Jennifer Raymond, George G Malliaras, Lisa Giocomo, Nicholas A Melosh
{"title":"NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions.","authors":"Marc D Ferro, Christopher M Proctor, Alexander Gonzalez, Sriram Jayabal, Eric Zhao, Maxwell Gagnon, Andrea Slézia, Jolien Pas, Gerwin Dijk, Mary J Donahue, Adam Williamson, Jennifer Raymond, George G Malliaras, Lisa Giocomo, Nicholas A Melosh","doi":"10.1063/5.0216979","DOIUrl":null,"url":null,"abstract":"<p><p>Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain-machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created \"NeuroRoots,\" a biomimetic multi-channel implant with similar dimensions (7 <i>μ</i>m wide and 1.5 <i>μ</i>m thick), mechanical compliance, and spatial distribution as axons in the brain. Unlike planar shank implants, these devices consist of a number of individual electrode \"roots,\" each tendril independent from the other. A simple microscale delivery approach based on commercially available apparatus minimally perturbs existing neural architectures during surgery. NeuroRoots enables high density single unit recording from the cerebellum <i>in vitro</i> and <i>in vivo</i>. NeuroRoots also reliably recorded action potentials in various brain regions for at least 7 weeks during behavioral experiments in freely-moving rats, without adjustment of electrode position. This minimally invasive axon-like implant design is an important step toward improving the integration and stability of brain-machine interfacing.</p>","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"14 8","pages":"085109"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0216979","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain-machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created "NeuroRoots," a biomimetic multi-channel implant with similar dimensions (7 μm wide and 1.5 μm thick), mechanical compliance, and spatial distribution as axons in the brain. Unlike planar shank implants, these devices consist of a number of individual electrode "roots," each tendril independent from the other. A simple microscale delivery approach based on commercially available apparatus minimally perturbs existing neural architectures during surgery. NeuroRoots enables high density single unit recording from the cerebellum in vitro and in vivo. NeuroRoots also reliably recorded action potentials in various brain regions for at least 7 weeks during behavioral experiments in freely-moving rats, without adjustment of electrode position. This minimally invasive axon-like implant design is an important step toward improving the integration and stability of brain-machine interfacing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经根(NeuroRoots)是一种受生物启发的无缝脑机接口,用于在精细脑区进行长期记录。
具有长期稳定性和低生物扰动的可扩展电子脑植入物是实现高质量脑机接口的关键技术,这种接口可以无缝接入大脑的精细和难以触及的区域。在这里,我们创造了 "NeuroRoots",一种生物仿真多通道植入体,其尺寸(7 微米宽,1.5 微米厚)、机械顺应性和空间分布与大脑中的轴突相似。与平面柄植入物不同,这些装置由许多独立的电极 "根 "组成,每个卷须相互独立。基于市场上可买到的设备,一种简单的微尺度给药方法在手术过程中对现有神经结构的扰动最小。NeuroRoots 能够在体外和体内对小脑进行高密度单单元记录。在对自由活动的大鼠进行行为实验时,NeuroRoots 还能可靠地记录不同脑区的动作电位至少 7 周,且无需调整电极位置。这种微创轴突状植入设计是提高脑机接口集成度和稳定性的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIP Advances
AIP Advances NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.80
自引率
6.20%
发文量
1233
审稿时长
2-4 weeks
期刊介绍: AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences. AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.
期刊最新文献
Dimensional analysis of diffusive association rate equations. Mathematical analysis of the Wiener processes with time-delayed feedback Numerical simulation and experimental study of the dynamic characteristics of a gas turbine rotor system with beam sea and head sea excitation Design and simulation of a Ka-band frequency doubling gyroklystron amplifier Flexible and anisotropically conductive film by assembly of silicone rubber and cobalt-coated glass fiber composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1