Ultrafast optical and passive acoustic mapping characterization of nanoscale cavitation nuclei based on gas vesicle proteins.
IF 1.4 4区 物理与天体物理Q4 MATERIALS SCIENCE, MULTIDISCIPLINARYAIP AdvancesPub Date : 2025-02-07eCollection Date: 2025-02-01DOI:10.1063/5.0239607
Cameron A B Smith, Avinoam Bar-Zion, Qiang Wu, Dina Malounda, Luca Bau, Eleanor Stride, Mikhail G Shapiro, Constantin C Coussios
{"title":"Ultrafast optical and passive acoustic mapping characterization of nanoscale cavitation nuclei based on gas vesicle proteins.","authors":"Cameron A B Smith, Avinoam Bar-Zion, Qiang Wu, Dina Malounda, Luca Bau, Eleanor Stride, Mikhail G Shapiro, Constantin C Coussios","doi":"10.1063/5.0239607","DOIUrl":null,"url":null,"abstract":"<p><p>Genetically encodable gas-filled particles, known as gas vesicles (GVs), have shown promise as a biomolecular contrast agent for ultrasound imaging and have the potential to be used as cavitation nuclei for ultrasound therapy. In this study, we used passive acoustic mapping techniques to characterize GV-seeded cavitation, utilizing 0.5 and 1.6 MHz ultrasound insonation over peak rarefactional pressures ranging from 100 to 2200 kPa. We found that GVs produce cavitation for the duration of the first applied pulse, up to at least 5000 cycles, but that bubble activity diminishes rapidly over subsequent pulses. At 0.5 MHz, the frequency content of cavitation emissions was predominantly broadband in nature, while at 1.6 MHz, narrowband content at harmonics of the main excitation frequency dominated. Simulations and high-speed camera imaging suggest that the received cavitation emissions come not from individual GVs but instead from the coalescence of GV-released gas into larger bubbles during the applied ultrasound pulse. These results will aid the future development of GVs as cavitation nuclei in ultrasound therapy.</p>","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"15 2","pages":"025016"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0239607","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetically encodable gas-filled particles, known as gas vesicles (GVs), have shown promise as a biomolecular contrast agent for ultrasound imaging and have the potential to be used as cavitation nuclei for ultrasound therapy. In this study, we used passive acoustic mapping techniques to characterize GV-seeded cavitation, utilizing 0.5 and 1.6 MHz ultrasound insonation over peak rarefactional pressures ranging from 100 to 2200 kPa. We found that GVs produce cavitation for the duration of the first applied pulse, up to at least 5000 cycles, but that bubble activity diminishes rapidly over subsequent pulses. At 0.5 MHz, the frequency content of cavitation emissions was predominantly broadband in nature, while at 1.6 MHz, narrowband content at harmonics of the main excitation frequency dominated. Simulations and high-speed camera imaging suggest that the received cavitation emissions come not from individual GVs but instead from the coalescence of GV-released gas into larger bubbles during the applied ultrasound pulse. These results will aid the future development of GVs as cavitation nuclei in ultrasound therapy.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.