Francesca Rubulotta, Sahar Bahrami, Dominic C Marshall, Matthieu Komorowski
{"title":"Machine Learning Tools for Acute Respiratory Distress Syndrome Detection and Prediction.","authors":"Francesca Rubulotta, Sahar Bahrami, Dominic C Marshall, Matthieu Komorowski","doi":"10.1097/CCM.0000000000006390","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) tools for acute respiratory distress syndrome (ARDS) detection and prediction are increasingly used. Therefore, understanding risks and benefits of such algorithms is relevant at the bedside. ARDS is a complex and severe lung condition that can be challenging to define precisely due to its multifactorial nature. It often arises as a response to various underlying medical conditions, such as pneumonia, sepsis, or trauma, leading to widespread inflammation in the lungs. ML has shown promising potential in supporting the recognition of ARDS in ICU patients. By analyzing a variety of clinical data, including vital signs, laboratory results, and imaging findings, ML models can identify patterns and risk factors associated with the development of ARDS. This detection and prediction could be crucial for timely interventions, diagnosis and treatment. In summary, leveraging ML for the early prediction and detection of ARDS in ICU patients holds great potential to enhance patient care, improve outcomes, and contribute to the evolving landscape of precision medicine in critical care settings. This article is a concise definitive review on artificial intelligence and ML tools for the prediction and detection of ARDS in critically ill patients.</p>","PeriodicalId":10765,"journal":{"name":"Critical Care Medicine","volume":" ","pages":"1768-1780"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Care Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CCM.0000000000006390","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) tools for acute respiratory distress syndrome (ARDS) detection and prediction are increasingly used. Therefore, understanding risks and benefits of such algorithms is relevant at the bedside. ARDS is a complex and severe lung condition that can be challenging to define precisely due to its multifactorial nature. It often arises as a response to various underlying medical conditions, such as pneumonia, sepsis, or trauma, leading to widespread inflammation in the lungs. ML has shown promising potential in supporting the recognition of ARDS in ICU patients. By analyzing a variety of clinical data, including vital signs, laboratory results, and imaging findings, ML models can identify patterns and risk factors associated with the development of ARDS. This detection and prediction could be crucial for timely interventions, diagnosis and treatment. In summary, leveraging ML for the early prediction and detection of ARDS in ICU patients holds great potential to enhance patient care, improve outcomes, and contribute to the evolving landscape of precision medicine in critical care settings. This article is a concise definitive review on artificial intelligence and ML tools for the prediction and detection of ARDS in critically ill patients.
期刊介绍:
Critical Care Medicine is the premier peer-reviewed, scientific publication in critical care medicine. Directed to those specialists who treat patients in the ICU and CCU, including chest physicians, surgeons, pediatricians, pharmacists/pharmacologists, anesthesiologists, critical care nurses, and other healthcare professionals, Critical Care Medicine covers all aspects of acute and emergency care for the critically ill or injured patient.
Each issue presents critical care practitioners with clinical breakthroughs that lead to better patient care, the latest news on promising research, and advances in equipment and techniques.