Objective: The aim of this study was to develop and externally validate a machine-learning model that retrospectively identifies patients with acute respiratory distress syndrome (acute respiratory distress syndrome [ARDS]) using electronic health record (EHR) data.
Design: In this retrospective cohort study, ARDS was identified via physician-adjudication in three cohorts of patients with hypoxemic respiratory failure (training, internal validation, and external validation). Machine-learning models were trained to classify ARDS using vital signs, respiratory support, laboratory data, medications, chest radiology reports, and clinical notes. The best-performing models were assessed and internally and externally validated using the area under receiver-operating curve (AUROC), area under precision-recall curve, integrated calibration index (ICI), sensitivity, specificity, positive predictive value (PPV), and ARDS timing.
Patients: Patients with hypoxemic respiratory failure undergoing mechanical ventilation within two distinct health systems.
Interventions: None.
Measurements and main results: There were 1,845 patients in the training cohort, 556 in the internal validation cohort, and 199 in the external validation cohort. ARDS prevalence was 19%, 17%, and 31%, respectively. Regularized logistic regression models analyzing structured data (EHR model) and structured data and radiology reports (EHR-radiology model) had the best performance. During internal and external validation, the EHR-radiology model had AUROC of 0.91 (95% CI, 0.88-0.93) and 0.88 (95% CI, 0.87-0.93), respectively. Externally, the ICI was 0.13 (95% CI, 0.08-0.18). At a specified model threshold, sensitivity and specificity were 80% (95% CI, 75%-98%), PPV was 64% (95% CI, 58%-71%), and the model identified patients with a median of 2.2 hours (interquartile range 0.2-18.6) after meeting Berlin ARDS criteria.
Conclusions: Machine-learning models analyzing EHR data can retrospectively identify patients with ARDS across different institutions.