Ethan P. Shapera, Dejan-Krešimir Bučar, Rohit P. Prasankumar, Christoph Heil
{"title":"Machine learning assisted prediction of organic salt structure properties","authors":"Ethan P. Shapera, Dejan-Krešimir Bučar, Rohit P. Prasankumar, Christoph Heil","doi":"10.1038/s41524-024-01355-x","DOIUrl":null,"url":null,"abstract":"<p>We demonstrate a machine learning-based approach which predicts the properties of crystal structures following relaxation based on the unrelaxed structure. Use of crystal graph singular values reduces the number of features required to describe a crystal by more than an order of magnitude compared to the full crystal graph representation. We construct machine learning models using the crystal graph singular value representations in order to predict the volume, enthalpy per atom, and metal versus semiconductor/insulator phase of DFT-relaxed organic salt crystals based on randomly generated unrelaxed crystal structures. Initial base models are trained to relate 89,949 randomly generated structures of salts formed by varying ratios of 1,3,5-triazine and HCl with the corresponding volumes, enthalpies per atom, and phase of the DFT-relaxed structures. We further demonstrate that the base model is able to be extended to related chemical systems (isomers, pyridine, thiophene and piperidine) with the inclusion of 2000 to 10,000 crystal structures from the additional system. After training a single model with a large number of data points, extension can be done at significantly lower cost. The constructed machine learning models can be used to rapidly screen large sets of randomly generated organic salt crystal structures and efficiently downselect the structures most likely to be experimentally realizable. The models can be used as a stand-alone crystal structure predictor, but may serve CSP efforts best as a filtering step in more sophisticated workflows.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"75 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01355-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a machine learning-based approach which predicts the properties of crystal structures following relaxation based on the unrelaxed structure. Use of crystal graph singular values reduces the number of features required to describe a crystal by more than an order of magnitude compared to the full crystal graph representation. We construct machine learning models using the crystal graph singular value representations in order to predict the volume, enthalpy per atom, and metal versus semiconductor/insulator phase of DFT-relaxed organic salt crystals based on randomly generated unrelaxed crystal structures. Initial base models are trained to relate 89,949 randomly generated structures of salts formed by varying ratios of 1,3,5-triazine and HCl with the corresponding volumes, enthalpies per atom, and phase of the DFT-relaxed structures. We further demonstrate that the base model is able to be extended to related chemical systems (isomers, pyridine, thiophene and piperidine) with the inclusion of 2000 to 10,000 crystal structures from the additional system. After training a single model with a large number of data points, extension can be done at significantly lower cost. The constructed machine learning models can be used to rapidly screen large sets of randomly generated organic salt crystal structures and efficiently downselect the structures most likely to be experimentally realizable. The models can be used as a stand-alone crystal structure predictor, but may serve CSP efforts best as a filtering step in more sophisticated workflows.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.