Spin-splitting above room-temperature in Janus Mn2ClSeH antiferromagnetic semiconductor with a large out-of-plane piezoelectricity

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2025-03-17 DOI:10.1038/s41524-025-01566-w
Haiming Lu, Sitong Bao, Bocheng Lei, Sutao Sun, Linglu Wu, Jian Zhou, Lili Zhang
{"title":"Spin-splitting above room-temperature in Janus Mn2ClSeH antiferromagnetic semiconductor with a large out-of-plane piezoelectricity","authors":"Haiming Lu, Sitong Bao, Bocheng Lei, Sutao Sun, Linglu Wu, Jian Zhou, Lili Zhang","doi":"10.1038/s41524-025-01566-w","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) antiferromagnets have garnered considerable research interest due to their robustness against external magnetic perturbation, ultrafast dynamics, and magneto-transport effects. However, the lack of spin-splitting in antiferromagnetic (AFM) materials severely limits their potential in spintronics applications. Inspired by inherent out-of-plane potential gradient of Janus structure, we predict three stable AFM Janus Mn<sub>2</sub>ClXH (X = O, S, and Se) monolayers with spontaneous spin-splitting based on first-principles calculations. Notably, Janus Mn<sub>2</sub>ClSeH exhibits a high Néel temperature of up to 510 K, robust perpendicular magnetocrystalline anisotropy, outstanding out-of-plane piezoelectricity of 0.454 × 10<sup>−10 </sup>C/m, and sizeable spontaneous valley polarization of 17.2 meV. Moreover, the spin-splitting can be significantly enhanced through appropriate synergistic regulation of biaxial strain and external electric field. These results demonstrate that the Janus Mn<sub>2</sub>ClSeH monolayer is a very potential candidate for designing intriguing antiferromagnet-based devices with fantastic piezoelectric and valleytronic characteristics.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"39 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01566-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) antiferromagnets have garnered considerable research interest due to their robustness against external magnetic perturbation, ultrafast dynamics, and magneto-transport effects. However, the lack of spin-splitting in antiferromagnetic (AFM) materials severely limits their potential in spintronics applications. Inspired by inherent out-of-plane potential gradient of Janus structure, we predict three stable AFM Janus Mn2ClXH (X = O, S, and Se) monolayers with spontaneous spin-splitting based on first-principles calculations. Notably, Janus Mn2ClSeH exhibits a high Néel temperature of up to 510 K, robust perpendicular magnetocrystalline anisotropy, outstanding out-of-plane piezoelectricity of 0.454 × 10−10 C/m, and sizeable spontaneous valley polarization of 17.2 meV. Moreover, the spin-splitting can be significantly enhanced through appropriate synergistic regulation of biaxial strain and external electric field. These results demonstrate that the Janus Mn2ClSeH monolayer is a very potential candidate for designing intriguing antiferromagnet-based devices with fantastic piezoelectric and valleytronic characteristics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维(2D)反铁磁体因其对外部磁扰动、超快动力学和磁传输效应的稳健性而引起了相当大的研究兴趣。然而,反铁磁(AFM)材料缺乏自旋分裂,严重限制了它们在自旋电子学应用中的潜力。受 Janus 结构固有的面外电位梯度的启发,我们根据第一性原理计算,预测了三种稳定的 AFM Janus Mn2ClXH(X = O、S 和 Se)单层材料具有自发自旋分裂。值得注意的是,Janus Mn2ClSeH 具有高达 510 K 的奈尔温度、强大的垂直磁晶各向异性、出色的面外压电性(0.454 × 10-10 C/m)以及可观的自发谷极化(17.2 meV)。此外,通过对双轴应变和外加电场进行适当的协同调节,还能显著增强自旋分裂。这些结果表明,Janus Mn2ClSeH 单层是一种非常有潜力的候选材料,可用于设计具有奇妙压电和谷电特性的基于反铁磁体的器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Elemental numerical descriptions to enhance classification and regression model performance for high-entropy alloys Reply to: Comment on “Machine learning enhanced analysis of EBSD data for texture representation” Spin-splitting above room-temperature in Janus Mn2ClSeH antiferromagnetic semiconductor with a large out-of-plane piezoelectricity Leveraging high-throughput molecular simulations and machine learning for the design of chemical mixtures An NV− center in magnesium oxide as a spin qubit for hybrid quantum technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1