Jin Zhang, Hengwei Yan, Zhangwei Liu, Shenghui Guo, Y. Yang, Guang Yang, Rui Xia, Mingyi Hu, Lan Li
{"title":"Review—Progress in Research and Application of Molten Salt Electrolysis for Titanium Extraction","authors":"Jin Zhang, Hengwei Yan, Zhangwei Liu, Shenghui Guo, Y. Yang, Guang Yang, Rui Xia, Mingyi Hu, Lan Li","doi":"10.1149/1945-7111/ad6d95","DOIUrl":null,"url":null,"abstract":"\n Titanium (Ti), a metal known for its exceptional performance, is abundant in nature and holds significant potential for a variety of applications and advancements. However, the conventional Kroll process has faced criticism due to its high energy consumption, complex procedures, and environmental impact. In response, metallurgists worldwide are actively exploring innovative and sustainable methods for Ti production. Titanium metal production is generally classified into two main methods according to the specific raw materials and preparation methods employed: thermal reduction and molten-salt electrolysis. This paper provides a review of these two primary Ti production processes, comparing their respective advantages and suggesting potential areas for improvement and breakthroughs. In particular, we emphasize recent advancements in molten-salt electrolysis, such as the utilization of Ti-rich alloys as raw materials and liquid metals as cathodes. Notably, the advances in molten-salt electrolysis with liquid metal as cathodes show promise for the continuous production of high-purity Ti at reduced costs and energy consumption. We also introduce a novel approach: the preparation of Ti metal through double-chamber molten-salt electrolysis. Additionally, we explore future directions for enhancing the Ti metal production process.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6d95","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium (Ti), a metal known for its exceptional performance, is abundant in nature and holds significant potential for a variety of applications and advancements. However, the conventional Kroll process has faced criticism due to its high energy consumption, complex procedures, and environmental impact. In response, metallurgists worldwide are actively exploring innovative and sustainable methods for Ti production. Titanium metal production is generally classified into two main methods according to the specific raw materials and preparation methods employed: thermal reduction and molten-salt electrolysis. This paper provides a review of these two primary Ti production processes, comparing their respective advantages and suggesting potential areas for improvement and breakthroughs. In particular, we emphasize recent advancements in molten-salt electrolysis, such as the utilization of Ti-rich alloys as raw materials and liquid metals as cathodes. Notably, the advances in molten-salt electrolysis with liquid metal as cathodes show promise for the continuous production of high-purity Ti at reduced costs and energy consumption. We also introduce a novel approach: the preparation of Ti metal through double-chamber molten-salt electrolysis. Additionally, we explore future directions for enhancing the Ti metal production process.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.