Systematic Evaluation of Adhesion and Fracture Toughness in Multi-Material Fused Deposition Material Extrusion

Materials Pub Date : 2024-08-09 DOI:10.3390/ma17163953
Md Abu Jafor, Neshat Sayah, Douglas E. Smith, G. Stano, Trevor J. Fleck
{"title":"Systematic Evaluation of Adhesion and Fracture Toughness in Multi-Material Fused Deposition Material Extrusion","authors":"Md Abu Jafor, Neshat Sayah, Douglas E. Smith, G. Stano, Trevor J. Fleck","doi":"10.3390/ma17163953","DOIUrl":null,"url":null,"abstract":"Material extrusion (MEX) additive manufacturing has successfully fabricated assembly-free structures composed of different materials processed in the same manufacturing cycle. Materials with different mechanical properties can be employed for the fabrication of bio-inspired structures (i.e., stiff materials connected to soft materials), which are appealing for many fields, such as bio-medical and soft robotics. In the present paper, process parameters and 3D printing strategies are presented to improve the interfacial adhesion between carbon fiber-reinforced nylon (CFPA) and thermoplastic polyurethane (TPU), which are extruded in the same manufacturing cycle using a multi-material MEX setup. To achieve our goal, a double cantilever beam (DCB) test was used to evaluate the mode I fracture toughness. The results show that the application of a heating gun (assembled near the nozzle) provides a statistically significant increase in mean fracture toughness energy from 12.3 kJ/m2 to 33.4 kJ/m2. The underlying mechanism driving this finding was further investigated by quantifying porosity at the multi-material interface using an X-ray computed tomography (CT) system, in addition to quantifying thermal history. The results show that using both bead ironing and the hot air gun during the printing process leads to a reduction of 24% in the average void volume fraction. The findings from the DCB test and X-ray CT analysis agree well with the polymer healing theory, in which an increased thermal history led to an increased fracture toughness at the multi-material interface. Moreover, this study considers the thermal history of each printed layer to correlate the measured debonding energy with results obtained using the reptation theory.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"12 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ma17163953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Material extrusion (MEX) additive manufacturing has successfully fabricated assembly-free structures composed of different materials processed in the same manufacturing cycle. Materials with different mechanical properties can be employed for the fabrication of bio-inspired structures (i.e., stiff materials connected to soft materials), which are appealing for many fields, such as bio-medical and soft robotics. In the present paper, process parameters and 3D printing strategies are presented to improve the interfacial adhesion between carbon fiber-reinforced nylon (CFPA) and thermoplastic polyurethane (TPU), which are extruded in the same manufacturing cycle using a multi-material MEX setup. To achieve our goal, a double cantilever beam (DCB) test was used to evaluate the mode I fracture toughness. The results show that the application of a heating gun (assembled near the nozzle) provides a statistically significant increase in mean fracture toughness energy from 12.3 kJ/m2 to 33.4 kJ/m2. The underlying mechanism driving this finding was further investigated by quantifying porosity at the multi-material interface using an X-ray computed tomography (CT) system, in addition to quantifying thermal history. The results show that using both bead ironing and the hot air gun during the printing process leads to a reduction of 24% in the average void volume fraction. The findings from the DCB test and X-ray CT analysis agree well with the polymer healing theory, in which an increased thermal history led to an increased fracture toughness at the multi-material interface. Moreover, this study considers the thermal history of each printed layer to correlate the measured debonding energy with results obtained using the reptation theory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统评估多材料熔融沉积材料挤压过程中的附着力和断裂韧性
材料挤压(MEX)增材制造技术成功地制造出了由在同一制造周期内加工的不同材料组成的无装配结构。具有不同机械特性的材料可用于制造生物启发结构(即刚性材料与软性材料连接),这对生物医学和软机器人等许多领域都很有吸引力。本文介绍了改善碳纤维增强尼龙(CFPA)和热塑性聚氨酯(TPU)之间界面粘附性的工艺参数和三维打印策略。为了实现我们的目标,我们采用了双悬臂梁(DCB)试验来评估模态 I 断裂韧性。结果表明,应用加热枪(装配在喷嘴附近)可使平均断裂韧性能量从 12.3 kJ/m2 显著增加到 33.4 kJ/m2。通过使用 X 射线计算机断层扫描(CT)系统对多材料界面的孔隙率进行量化,并对热历史进行量化,进一步研究了这一发现的内在机理。结果表明,在印刷过程中使用珠熨和热风枪可使平均空隙体积分数减少 24%。DCB 测试和 X 射线 CT 分析的结果与聚合物愈合理论十分吻合,即热历史的增加会导致多材料界面断裂韧性的增加。此外,本研究还考虑了每个印刷层的热历史,从而将测得的脱粘能量与使用跃迁理论得出的结果联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photoluminescence of Chemically and Electrically Doped Two-Dimensional Monolayer Semiconductors Machine Learning-Based Prediction Models for Punching Shear Strength of Fiber-Reinforced Polymer Reinforced Concrete Slabs Using a Gradient-Boosted Regression Tree Preparation and Properties of Lightweight Aggregates from Discarded Al2O3-ZrO2-C Refractories Bending Collapse and Energy Absorption of Dual-Phase Lattice Structures Evaluation of Material Integrity Using Higher-Order Harmonic Generation in Propagating Shear Horizontal Ultrasonic Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1