{"title":"Nanocomposite Strategy toward Enhanced Thermoelectric Performance in Bismuth Telluride","authors":"Hua‐Lu Zhuang, Jincheng Yu, Jing‐Feng Li","doi":"10.1002/smsc.202400284","DOIUrl":null,"url":null,"abstract":"Bismuth telluride‐based thermoelectric (TE) materials have been commercially applied in near‐room temperature refrigeration. However, enhancing their TE performance remains crucial for expanding their application fields. Nanocomposite strategy has been widely reported as an effective approach to improving the TE performance of bismuth telluride‐based materials. In this review, the nanoinclusions are categorized into different groups, including nonmetallic hard nanoparticles, metallic nanoparticles, compounds with low thermal conductivity, and low‐dimensional materials. A comprehensive overview of relevant researches and present typical cases and recent advancements is provided. It is worth noting that nonmetallic hard nanoparticles are most widely used for reinforcing bismuth telluride‐based materials; the noticeable enhancement can be attributed to the interfaces that induce phonon scattering to reduce lattice thermal conductivity as well as multiple scattering effects along with energy filtering to increase the Seebeck coefficient. Although there exist challenges in terms of interface characterization and dispersion improvement for nanoinclusions, it is undeniable that the nanocomposite strategy offers a viable pathway to enhance the TE performance of bismuth telluride‐based materials. Therefore, further exploration in this direction is warranted to promote the development and application of TE technology at near‐room temperature.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bismuth telluride‐based thermoelectric (TE) materials have been commercially applied in near‐room temperature refrigeration. However, enhancing their TE performance remains crucial for expanding their application fields. Nanocomposite strategy has been widely reported as an effective approach to improving the TE performance of bismuth telluride‐based materials. In this review, the nanoinclusions are categorized into different groups, including nonmetallic hard nanoparticles, metallic nanoparticles, compounds with low thermal conductivity, and low‐dimensional materials. A comprehensive overview of relevant researches and present typical cases and recent advancements is provided. It is worth noting that nonmetallic hard nanoparticles are most widely used for reinforcing bismuth telluride‐based materials; the noticeable enhancement can be attributed to the interfaces that induce phonon scattering to reduce lattice thermal conductivity as well as multiple scattering effects along with energy filtering to increase the Seebeck coefficient. Although there exist challenges in terms of interface characterization and dispersion improvement for nanoinclusions, it is undeniable that the nanocomposite strategy offers a viable pathway to enhance the TE performance of bismuth telluride‐based materials. Therefore, further exploration in this direction is warranted to promote the development and application of TE technology at near‐room temperature.
基于碲化铋的热电(TE)材料已在近室温制冷领域得到商业应用。然而,提高其 TE 性能对于扩大其应用领域仍然至关重要。纳米复合策略作为提高碲化铋基材料 TE 性能的有效方法已被广泛报道。在这篇综述中,纳米夹杂物被分为不同的类别,包括非金属硬纳米颗粒、金属纳米颗粒、低热导率化合物和低维材料。本文全面概述了相关研究、典型案例和最新进展。值得注意的是,非金属硬纳米粒子被最广泛地用于增强铋碲基材料;其显著增强可归因于界面诱导声子散射以降低晶格热导率,以及多重散射效应和能量过滤以增加塞贝克系数。尽管在纳米夹杂物的界面表征和分散改进方面存在挑战,但不可否认的是,纳米复合策略为提高铋碲基材料的 TE 性能提供了一条可行的途径。因此,有必要在这一方向上进行进一步探索,以促进近室温 TE 技术的开发和应用。
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.