{"title":"A high-capacity and long-lifespan SnO2@K-MnO2 cathode material for aqueous zinc-ion batteries","authors":"Xiaoqing Jin, Yae Qi, Yongyao Xia","doi":"10.1007/s11706-024-0694-8","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous Zn//MnO<sub>2</sub> rechargeable zinc-ion batteries (ZIBs) possess potential applications in electrochemical energy storage due to their safety, low cost, and environmental friendliness. However, manganese dioxide as the cathode material has poor cycle stability and low conductivity. In this work, the SnO<sub>2</sub>@K-MnO<sub>2</sub> (SMO) composite was prepared using the hydrothermal method followed by the treatment with SnCl<sub>2</sub> sensitization, and its electrochemical characteristics were examined using SMO as the cathode material for ZIBs. The reversible specific capacity reaches 298.2 mA·h·g<sup>−1</sup> at 0.5 A·g<sup>−1</sup>, and an excellent capacity retention of 86% is realized after 200 cycles, together with a high discharge capacity of 105 mA·h·g<sup>−1</sup> at 10 A·g<sup>−1</sup> and a long-term cycling life of over 8000 cycles with no apparent capacity fade. This cathode exhibits a long cycle life up to 2000 cycles at 2 A·g<sup>−1</sup> with the mass loading of 5 mg·cm<sup>−2</sup>, and the battery maintains the capacity of 80%. The reversible co-embedding mechanism of H<sup>+</sup>/Zn<sup>2+</sup> in such a Zn//SMO battery was confirmed by XRD and SEM during the charge/discharge process. This work can enlighten and promote the development of advanced cathode materials for ZIBs.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0694-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous Zn//MnO2 rechargeable zinc-ion batteries (ZIBs) possess potential applications in electrochemical energy storage due to their safety, low cost, and environmental friendliness. However, manganese dioxide as the cathode material has poor cycle stability and low conductivity. In this work, the SnO2@K-MnO2 (SMO) composite was prepared using the hydrothermal method followed by the treatment with SnCl2 sensitization, and its electrochemical characteristics were examined using SMO as the cathode material for ZIBs. The reversible specific capacity reaches 298.2 mA·h·g−1 at 0.5 A·g−1, and an excellent capacity retention of 86% is realized after 200 cycles, together with a high discharge capacity of 105 mA·h·g−1 at 10 A·g−1 and a long-term cycling life of over 8000 cycles with no apparent capacity fade. This cathode exhibits a long cycle life up to 2000 cycles at 2 A·g−1 with the mass loading of 5 mg·cm−2, and the battery maintains the capacity of 80%. The reversible co-embedding mechanism of H+/Zn2+ in such a Zn//SMO battery was confirmed by XRD and SEM during the charge/discharge process. This work can enlighten and promote the development of advanced cathode materials for ZIBs.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.